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Abstract
The availability of large, diverse datasets has enabled transformative advances in a wide variety of technical fields by unlock-
ing data scientific and machine learning techniques. In Materials Informatics for Heterogeneous Microstructures capitaliza-
tion on these techniques has been limited due to the extreme complexity of generating or curating sizeable heterogeneous 
microstructure datasets. Historically, this difficulty can be attributed to two main hurdles: quantification (i.e., measuring 
microstructure diversity) and curation (i.e., generating diverse microstructures). In this paper, we present a framework for 
curating large, statistically diverse mesoscale microstructure datasets composed of 2-phase microstructures. The framework 
generates microstructures which are statistically diverse with respect to their n-point statistics—the primary emphasis is 
on diversity in their 2-point statistics. The framework’s foundation is a proposed set of algorithms for synthesizing salient 
2-point statistics and neighborhood distributions. We generate statistically diverse microstructures by using the outputs 
of these algorithms as inputs to a statistically conditioned Local-Global Decomposition generation procedure. Finally, we 
demonstrate the proposed framework by curating MICRO2D, a diverse, large-scale, and open source heterogeneous micro-
structure dataset comprised of 87, 379 2-phase microstructures. The contained microstructures are periodic and 256 × 256 
pixels. The dataset also contains salient homogenized elastic and thermal properties computed across a range of constituent 
contrast ratios for each microstructure. Using MICRO2D, we analyze the statistical and property diversity achievable via 
the proposed framework. We conclude by discussing important areas of future research in microstructure dataset curation.

Keywords Big Data · 2-point statistics · Heterogeneous Microstructures · Diffusion-based Deep Learning · Local-Global 
Decompositions · Dataset Curation

Introduction

Over the last decade and a half, researchers have used data 
science, machine learning, and deep learning techniques to 
make tremendous advances on a wide variety of challeng-
ing problems [1–7]. These advances are overwhelmingly 
clustered in domains where the needed training datasets can 
be readily curated (e.g., natural language processing [2, 8], 
computer vision [3, 9–12], recommendation systems [13], 
translation [14]). More recently, these techniques are slowly 
being adopted in the sciences and engineering. For example, 

advances in bioinformatics [15–19] have rapidly acceler-
ated our understanding of genomics—these methods were 
instrumental in the development of the COVID19 vaccines 
[17]. However, capitalization on these transformative tech-
niques in the sciences and engineering is bottlenecked by the 
expense of curating training datasets. For example, Deep-
Mind’s breakthrough protein folding algorithm, AlphaFold 
[15], was trained on the World Wide Protein Data Bank—
a database of almost two hundred thousand experimental 
measurements of proteins [17]. This database has taken 
nearly fifty years to curate. Better methods are critically 
needed for rapidly curating such big datasets.

Over the last decade, national initiatives such as the 
Materials Genome Initiative [20] have fostered new research 
directions which leverage data science and machine learn-
ing to accelerate the design [21–30], discovery [31–33] and 
manufacturing [34–36] of engineering materials. However, 
limited and irregular materials data has remained the largest 
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roadblock to progress (e.g., [37]), even as research in this 
area has proliferated. A wide variety of data generation 
and data infrastructure initiatives have arisen in response 
[38–47]. In particular, significant efforts have been made for 
atomistic [38, 48, 49] and polymeric systems [50–52]. How-
ever, similar progress at the mesoscale—generating datasets 
comprised of diverse heterogeneous microstructures—has 
been absent [37, 45, 47, 53, 54]. Statistically diverse data-
sets at this lengthscale are difficult to curate directly due to 
challenges in quantifying these systems and the difficulty of 
diversely sampling these quantifying measures. Currently, 
two potential options exist for such a direct approach: deep 
learning methods and those based on microstructural statis-
tics. Deep learning methods have demonstrated the capac-
ity to construct highly expressive and easily sampled latent 
spaces—seemingly ideal for generating datasets [55–58]. 
However, the out-of-distribution instability of these meth-
ods means that these spaces are largely limited to contain-
ing statistically similar microstructures to the deep learning 
algorithm’s original training data. As a result, they act as 
a source of generating statistically similar data to what is 
already available, precluding exploratory ability. In contrast, 
statistical methods—such as n-point statistics—provide a 
learning-free, stable quantification theoretically encom-
passing the full space of microstructures [40, 44, 59–64]. 
However, this pathway presents the conjugate challenge; it 
is difficult to perform statistically conditioned microstruc-
ture generation as well as to uniformly sample the space 
of microstructure statistics—particularly for salient higher 
order spatial statistics, i.e., 2-point statistics [22, 62–67]. As 
a result, this approach has been historically limited to gener-
ating statistically diverse datasets with respect to mean-field 
(i.e., first-order) statistics [39, 40, 68, 69]. These datasets 
are limited by their lack of diversity and control over the 
spatial arrangement of their features [40, 70]—an impor-
tant characteristic only quantified by higher-order statistical 
measures such as 2-point statistics [60, 61, 71]. Recently, 
significant progress has even been made on 2-point statistics 
conditioned microstructure generation [63–66]. However, 
the second requirement—diversely sampling the statistical 
space—remains elusive when conditioning on 2-point sta-
tistics because of the space’s complex boundaries and high 
dimensionality. Without the ability to systematically quan-
tify and generate arbitrary microstructure data (in a manner 
similar to what is possible for lower length-scale systems—
such as atomistics [38, 48, 49]), efforts have been limited 
to pursuing microstructure generation efforts via process 
modeling [31, 72, 73], introducing an additional complex 
nonlinear linkage.

Prior efforts in the process driven generation of diverse 
heterogeneous microstructures can be classified broadly into 
two dominant categories. The first category is experimental 
data [41, 42, 45, 47, 53, 74, 75]; several large campaigns 

have attempted to directly collate experimental datasets [45, 
47, 53]. However, such efforts are limited by the complexity 
of data collection—experimental samples are expensive to 
synthesize, complicated to image, and must be carefully seg-
mented before usage. This triad often curtails the size and 
diversity of such datasets. A common shortcut is extracting 
multiple images from the same material system, resulting in 
visually diverse but not statistically diverse microstructure 
datasets (e.g., [55, 57, 76]). The second category is simu-
lated data [44, 54, 72, 73, 77, 78]. Again, the complexity 
of synthesizing heterogeneous microstructure data caps the 
achievable diversity. Prominent examples utilize parametric 
models specialized to mimic specific material systems [54]. 
Altogether, both methods highlight the limitation of taking 
a process-centered approach to dataset generation: the diver-
sity in the dataset is directly limited by the diversity of the 
generating process.

In this paper, we propose a novel framework for directly 
generating statistically diverse, heterogeneous, mesoscale 
microstructure datasets of 2-phase composites from the joint 
quantifying spaces of 2-point spatial statistics and neighbor-
hood distributions. An important goal of this paper is to 
propose a data curation method and provide an open-source 
dataset that will support ongoing microstructure informat-
ics efforts (e.g., [37, 72, 76, 79–83]). We focus on periodic 
representative mesoscale systems since this type of data is 
used extensively in ongoing efforts, such as Process-Struc-
ture–Property modeling [31, 72, 83–85]. Additionally, we 
selected to modulate these specific microstructure features 
because it is well established that many salient microstruc-
ture properties are highly sensitive to these features. In par-
ticular, we preferentially focus on 2-point statistics because 
of the absence of existing methods to produce second order 
diverse datasets in the literature and their well documented 
importance [86–96]. Via a direct approach, we are able to 
synthesize a wide dataset with uniform representation across 
a large, representative section of the space of 2-point sta-
tistics. The framework involves three components. First, 
proposal: this algorithm, inspired by the spectral mixture 
concept [97, 98], synthesizes and proposes potential 2-point 
statistics. Next, filtering: this algorithm sub-samples the pro-
posed 2-point statistics to recover a sparse, uniform coverage 
of the quantifying space of 2-point statistics. Finally, gen-
eration: a microstructure dataset is sampled from the candi-
date 2-point statistics dataset using Local–Global Decom-
position (LGD)-based generative models [64]. Notably, the 
proposed approach incorporates both the candidate spatial 
statistics as well as a wide diversity of local neighborhoods 
effectively expanding the diversity of the generated dataset. 
Qualitatively, the diversity in the neighborhood distributions 
allows us to incorporate local features mimicking several 
salient material classes (e.g., fiber composites [99] and 
nickel-based superalloy [94]). The variation in the 2-point 
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statistics modulates the spatial patterning of these individual 
features—a variation which can have a significant impact on 
the microstructure’s homogenized properties [86–96]. In this 
paper, we demonstrate an initial application of the proposed 
framework by synthesizing MICRO2D, a large, open-source 
and statistically diverse 2-phase microstructure dataset. The 
contained microstructures are periodic and 256 × 256 pixels. 
We analyze the dataset’s microstructural and property diver-
sity. Our analysis demonstrates that pursuing diversity with 
respect to 2-point statistics automatically achieves diversity 
with respect to a wide variety of material properties. We 
design and distribute this dataset with the intention of sup-
porting the budding microstructure informatics community. 
Finally, we outline some significant areas of future work in 
the continuing development of microstructure datasets.

Background

The proposed framework relies and expands upon several 
important topics in Materials Informatics and statistical 
modeling. For clarity we briefly introduce the notation 
adopted throughout the paper. Vector-valued quantities are 
demarcated in bold, a . Quantities with spatial dependency, 
such as spatially resolved functions, are demarcated using a 
subscript for discrete quantities or a spatial dependency for 
continuous quantities: as and a(x) , respectively. Components 
of vector-valued quantities are indexed using a superscript, 
a� = a ⋅ e� , where e� is the �-basis vector. To avoid confu-
sion, when necessary, exponents will be applied outside of 
parentheses, (a)2 . Finally, summations will always be writ-
ten explicitly using the summation operator and are never 
implied by repeated indices.

2‑Point Statistics

Our express aim in this paper is to systematically synthesize 
a statistically diverse heterogeneous microstructure dataset 
for 2-phase composites. In this context, “diversity” is inher-
ently defined only with respect to the selected statistic. As 
a result, a set of stable and highly expressive statistics is 
highly desirable. 2-point statistics are a powerful, flexible, 
and analytic microstructure quantification paradigm that 
has been utilized in a wide variety of Materials Informatics 
frameworks at various lengthscales; such as the development 
of analytic [100–105] and learned [86–96] advanced struc-
ture–property homogenization models, process-structure 
linkages [34, 35, 106], discovery [31, 91], microstructure 
sensitive design [21, 24, 107, 108], and inverse problems 
for nondestructive testing [109]. The value of these statistics 
arises from their direct development in statistical continuum 
mechanics [60, 101, 110]—guaranteeing their sensitiv-
ity to many material properties and processes—and their 

sensitivity to the spatial arrangement of salient microstruc-
ture features [59, 71, 111]. Importantly, these expressive 
statistics contain other important microstructure statistics, 
such as mean-field measures [71]. As a result, diversity with 
respect to the 2-point statistics represents significant diver-
sity in the microstructure space.

The 2-point statistics can be efficiently computed via the 
following discrete Fourier transform expression [61].

Here, F[⋅] and F−1
[⋅] are the Fast Fourier Transform opera-

tion and its inverse, respectively, and (⋅)∗ represents conjuga-
tion. m�

s
 is the discrete microstructure function – a discre-

tized representation of the microstructure—for material state 
� and voxel s [61, 63]. The significant limitation of the space 
of 2-point statistics is its high dimensionality and complex 
constraints. For quantification and analysis, the MKS frame-
work overcomes this high dimensionality by extracting sali-
ent low-dimensional representations of a dataset of 2-point 
statistics using Principal Component Analysis (PCA) [112] 
(e.g., [87, 88, 92]). PCA is used because it is a distance-
preserving [112] dimensionality reduction technique.1 This 
analysis technique will be used extensively in Sect. 4. For 
the purposes of this work, these limitations also complicate 
sampling and identifying individual 2-point statistics with-
out computing them indirectly via a microstructure and Eq. 
(1). Analyzing the expression above, Niezgoda et al. [71] 
delineate several characteristic identities that must be met 
by a valid set of 2-point statistics. The most important to 
this work is that the spectrum of a valid autocorrelation—a 
2-point statistic between a phase and itself—must be real-
valued and positive.

Spectral Mixture Kernels

The first step of the proposed framework proposes a flexible 
and expressive parameterization that simplifies the identifi-
cation of novel 2-point statistics. Our proposed parameteri-
zation derives from the design of kernels in Gaussian Pro-
cess Regression (GPR). The expressiveness and flexibility 
of the covariance kernel directly defines the modeling capac-
ity of GPR models. As a result, this linkage has fostered 
extensive research efforts focused on carefully designing 
these kernels. Spectral Mixture Kernels are an extremely 

(1)f ��
r

=
1

S
F−1

[F[m�
s
]
∗

t
F[m�

s
]t]r

(2)F[f ��
r
]t ∈ ℝ

+

1 Specifically, PCA is distance preserving only when the entire basis 
is maintained [112]. However, in practice, truncated PC representa-
tions provide useful dimensionality reduction while being approxi-
mately distance preserving [87, 88, 92].
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expressive variant that learn a problem specific kernel struc-
ture by optimizing a distributional mixture model in the ker-
nel function’s frequency space. The strategy relies on the 
following expression [97, 98]:

where S(s) is proportional to a valid probability density 
function2—i.e., it is positive and real valued. In their origi-
nal work, Wilson and Adams [97] parameterize the kernel 
function by approximating the spectral density, S(s) , using a 
Mixture Model composed of symmetrized Gaussians. Other 
mixture structures have also been proposed [98]. Wilson and 
Adams [97] argue that this form produces kernels that are 
dense in the space of all kernels—theoretically justifying 
the expressiveness of this kernel structure – and provide a 
series of examples demonstrating their utility on a variety 
of benchmark problems.

MaxPro Algorithm

The developed parameterization offers a direct method for 
proposing 2-point statistics. However, it does not guarantee 
that the proposed statistics efficiently represent (i.e., cover) 
the statistical space. The MaxPro algorithm [113, 114] pro-
vides a general solution to the problem of filtering large 
datasets. This algorithm identifies a subset of samples from a 
large candidate dataset such that the subset nearly optimally 
covers the dataset’s space. In this sense, the quality of the 
coverage of the full space is directly bound by the diver-
sity of the candidate dataset and the greedy structure of the 
MaxPro algorithm. In practice, empirical observation has 
shown the later error source to be limited [115]. The Max-
Pro algorithm sequentially solves the following min–max 
optimization:

Here, CN is the full candidate dataset and D is the current 
design at step m. The optimization is repeatedly solved, with 
x̂m+1 being added to D after each solve, until the design con-
tains a desired number of elements.

Local‑Global Decomposition Generative Models

The final step in the proposed framework requires an effi-
cient framework for generating microstructures correspond-
ing to the identified 2-point statistics. Recently, we proposed 
the Local-Global Decomposition (LGD) framework for 

(3)k(�) = ∫ S(s) exp(2�isT�)ds

(4)x̂m+1 = argmax
x∈CN�D

min
x̂∈D

||x − x̂||2

generating microstructures conditioned on specified combi-
nations of 2-point statistics as well as neighborhood distribu-
tions [64]. This probabilistic generative framework provides 
sampling algorithms that are one to two orders of magnitude 
faster than alternative options [62, 65, 116–118]. We empha-
size that this speed-up is critical for the focus of this paper 
because of the number of generating operations necessary 
to build up a large microstructure dataset. The LGD frame-
work can be described by the following approximation of the 
stochastic microstructure function:

Here, N(m̂1,… , m̂S;�, f r) is a Gaussian Random Field 
(GRF) over the entire spatial domain that enforces the tar-
geted 1- and 2-point statistics, � and f r , respectively [63]. 
pcond(Ni|N̂i,Ni

c;Φ(3,…)
) is the neighborhood distribution 

which locally perturbs the output of the GRF to introduce 
system specific local features, such as sharp phase bound-
aries, without significantly impacting the targeted 1- and 
2-point statistics [63, 64]. Simplifying the full decomposi-
tion produces a family of generative models that balance 
computational efficiency, the need to capture higher-order 
features in the generated microstructures, and the training 
requirements. Specifically, it is noted that removing the 
neighborhood distributions returns the GRF model [63], 
using deterministic neighborhood distributions produces 
the filtered GRF [63], and utilizing learned neighborhood 
distributions yields the full diffusion-based LGD model [64].

Framework

In this section, we outline the proposed framework for con-
structing 2-phase microstructure datasets and introduce the 
needed algorithms. The details of the implementation of the 
overall framework are summarized in Fig. 1. Conceptually, 
the framework has three main components: two preparation 
stages in which (1) salient autocorrelations are identified and 
(2) microstructure neighborhood distributions are selected. 
Finally, in stage three, we generate microstructures display-
ing these identified statistics using LGD-based statistically 
conditioned generation. The autocorrelation—the 2-point 
statistics of a single phase (in the coming application: the 
black phase)—is the only 2-point statistics map that must 
be considered because the microstructures are 2-phase [71].

The framework’s first component identifies a diverse 
dataset of autocorrelations. This component has 
three substeps. First, parameterization: we propose a 

p(m1,… ,mS;�, f r) =N(m̂1,… , m̂S;�, f r)

K∏

i=1

pcond(Ni|N̂i,Ni
c;Φ(3,…)

)

2 We emphasize the similarity of this requirement to that given by 
Niezgoda et al. [71] above.
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flexible parameterization for the autocorrelation function, 
Sect. 3.1. Second, sampling: we identify an efficient sam-
pling strategy for instantiating parameter values to realize 
potential autocorrelations, Sect. 4 and 3.1. We use this 
sampling strategy to sample an extremely large number of 

potential autocorrelations. Third, thinning: we reduce the 
initial candidate set into a space-filling subset using the 
MaxPro algorithm, Sect. 3.2. All steps in the first compo-
nent are summarized in Algorithm 1. 

Algorithm 1  Algorithm summarizing the framework’s first component: space-filling autocorrelations.

summarized in Algorithm 2. In the remainder of this section, 
we will focus primarily on the framework’s first component 
since we have exhaustively covered the technical details of 
statistically conditioned generation previously [63, 64]. 

Fig. 1  Visual summary of the proposed framework

In the second component, we select microstructure neigh-
borhood distributions, Sect. 4. Finally, in the third compo-
nent, we combine the identified autocorrelations and neigh-
borhood distributions to generate a diverse microstructure 
dataset using LGD-based generation. The third component is 
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Algorithm 2  Algorithm summarizing the framework’s third component: generation.

Autocorrelation Parameterization

The proposed space-filling procedure for generating diverse 
autocorrelations revolves around systematically sampling 
an extremely flexible parameterization of the autocorrela-
tion function. In our prior work on Gaussian Random Field 
modeling for 2-point statistics conditioned generation, we 
observed that any 2-point statistics can be readily trans-
formed into a valid set of kernel functions. Here, the valid-
ity of the conjugate statement provides a natural pathway 
for constructing autocorrelations. We propose the follow-
ing parameterization of the autocorrelation function, heavily 
inspired by the concept of the Spectral Mixture kernels in 
Gaussian Process Regression, Sect. 2.2.

(5)k̂(�) =

M∑

i=1

𝛼i

2

[
𝜙(�;�i,�i) + 𝜙(�; − �i,�i)

]

(6)
�(�;�,�) =

(
2k�k|�|

)−1∕2
exp

(
−0.5(� − �)T�

−1
(� − �)

)

(7)k̂r = k̂(�r)

(8)kr = C−1[max
(
F[k̂r]t, 𝜖

)
]r

(9)f̂ 𝛽𝛽
r

= kr + (v
𝛽

f
)
2

Here, k̂(�) in Eq. (6), is an approximate kernel function con-
structed via a mixture of symmetric Gaussian distribution. 
In Eq. (6), superscripts denote exponentiation not indexing. 
The approximate kernel is parameterized by M, �i , �i , and 
�i , the number of mixtures, the mixture weight3 and mean 
and covariance of each Gaussian, respectively. Although this 
parameterization is able to recreate many of the salient fea-
tures in autocorrelations—e.g., Sect. 4, it contains unaccep-
table negative frequency values. kr is a valid discrete kernel 
function, sampled over the same discrete grid as the micro-
structure, produced by removing the negative spectral com-
ponents [92], Eq. (8). In Eq. (8), C−1 is the inverse discrete 
cosine transform and � is a very small, positive number.4 f̂ 𝛽𝛽

r
 

is the approximate �-phase autocorrelation recovered using 
the expression identified in Robertson et al. [63]. v�

f
 is the 

volume fraction of the �-phase. In the remainder of this 
work, for compactness, we will drop the � index because the 
microstructures considered are 2-phase [71]. Critically, a 
wide diversity of autocorrelations can be systematically con-
structed by carefully identifying the parameterizing mean 
vectors, �i , and covariance matrices, �i . Appendix A con-
tains the development of these expressions as well as a care-
ful discussion of the relationship between these expressions 
and other spectral mixture models.

Although the described parameterization produces valid 
autocorrelations, it does not guarantee that these autocorre-
lations could be computed from a possible material system 
(this includes either an individual microstructure [71, 111] 

(10)f 𝛽𝛽
r

= E
m

𝛽
s∼GRF

(
⋅;f̂

𝛽𝛽
r

)
[
1

S
F−1

[F[m𝛽
s
]
∗

t
F[m𝛽

s
]t]r

]

3 The mixture weights must sum to 1. In this work, all weights in a 
single parameterization were set to the same value.
4 In this work, we set this value to � = 10−8.
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or the average of a set of microstructures [119]). As a result, 
we impose a final transformation (Eq. (10)); we compute 
the expected autocorrelation, f ��

r
 , from samples from the 

Gaussian Random Field model parameterized by the initial 
proposed autocorrelation, f̂ (𝛽𝛽)

r
 . This expected autocorrela-

tion is taken as the projection of the proposed autocorrela-
tion into the subspace of autocorrelations associated with 
2-phase microstructures and is added to the candidate auto-
correlation set. Throughout this work, N = 20 GRF samples 
were used to estimate this average, balancing stability and 
accuracy against computational demands.

Next, one must identify a set of salient values for the 
parameters of this approximation in order to cover the space 
of autocorrelations: M, �i and �i , and �i . An optimal strat-
egy to identify salient values is unclear. While one option 
is to exhaustively perform this sampling using available 
procedures [120–122], this process would likely be highly 
inefficient5 and repetitive. In Sect. 4, we will propose and 
utilize a set of expert-guided heuristics for selecting salient 
parameter values while using this framework to synthesize 
a diverse 2-phase microstructure dataset.

Space‑filling for Autocorrelations

It is likely that the generated candidate set of autocorrela-
tions will not be uniformly spaced regardless of the adopted 
parameter suggesting procedure.6 As a result, to complete 
the space-filling procedure, we distill this initial candidate 
set, CN , into a final space-filling design, D , using the MaxPro 

algorithm [113, 115], Sect. 2.3. Note, this is most effective 
if the number of candidates in the initial generated candi-
date set is vastly larger than the desired number of candi-
dates in the final dataset. We reduce the dimensionality of 
the autocorrelations using Principal Component Analysis 
(PCA) to accelerate the runtime of the MaxPro algorithm. 
Unlike standard forward modeling approaches, we retain a 
high number of principle components to ensure that most 
fine microstructural details are captured. The number of 
retained components is application specific. For example, 
in MICRO2D, we kept 750 components, Sect. 4 and Appen-
dix B. We emphasize that compared with a more informa-
tion-dense compression algorithm, truncated PCA is pref-
erable due to its approximate distance-preserving property 
[112].

Even with the established parameterization and space-
filling, it is worth noting that defining a sufficient sampling 
is not simple. Clearly establishing a target for “sufficient 
diversity” is one of the biggest challenges of curating diverse 
autocorrelation datasets or, equivalently, of curating micro-
structure datasets which are diverse with respect to their 
autocorrelations. This is difficult because the autocorrela-
tion space is extremely high dimensional and is identified by 
highly complex and high dimensional constraints [71, 108]. 
Furthermore, much of the space is allocated to high fre-
quency content. These high frequency variations are physi-
cally realized as extremely small features and noise; practi-
cally, we do not wish to sample these regions when building 
a dataset because we do not expect them to appreciably vary 
salient properties. As a result, even identifying a desirable 
sampling domain, similar to how one might define a mini-
mum and maximum volume fraction, is extremely challeng-
ing. Instead, in this work, we have chosen to motivate diverse 
sampling using two assumed guiding principles. First, large 
diversity for a set of autocorrelation maps is equivalent to 
large Euclidean distances between each individual map’s 
coordinates in a representative and efficient orthogonal basis 
for the autocorrelation space (e.g., a PCA basis). Second, 

Fig. 2  Visual summary of the four heuristic autocorrelation construc-
tion strategies utilized in this paper. White writing identifies each 
heuristic strategy’s salient parameters. As discussed in the main text, 

almost all parameters included to the left of an individual subfigure 
are also present in that subfigure (e.g., the white notation in (a) also 
applies to (b))

5 Empirical observations strongly indicate that large parts of the 
parameter space are not important for many engineering systems 
(e.g., [94, 123]). For example, in general, peaks closer to zero, i.e., 
with �

i
 near zero, are more prevalent and important in real autocor-

relations.
6 This will likely be true even if optimal space filling is accomplished 
over the parameter space, because of the nonlinear generation trans-
formation step described earlier.
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we are primarily interested in autocorrelations which are 
diverse with respect to the first principle and lack noise. 
The framework’s usage of PCA and the MaxPro algorithm 
is designed to target the first principle, while the design of 
the heuristic strategies and the specific mathematics of the 
proposed parametric approximation guarantees the second 
(see Appendix A for an analysis of the preference toward 
low frequency patterns). Even with these principles, identi-
fying whether we achieve a “sufficient diversity” remains a 
significant, unsolved problem. In the remaining sections, we 
provide extensive analysis of the achieved diversity via sev-
eral indirect methods; for example, we compare against other 
existing datasets and against existing theoretical analysis of 
the space of 2-point statistics [71]. However, we expect that 
“sufficiency” will only be established over time by future 
usage of the framework and the derived dataset and via con-
sensus from the community.

MICRO2D: Second‑Order Diversity at Scale

In this section, we will leverage the proposed framework to 
synthesize a 2-phase heterogeneous microstructure dataset 
that is statistically diverse with respect to its 2-point sta-
tistics. We begin by finalizing the remaining, application 
specific framework details—i.e., identifying the parameter 
selection strategy and the local neighborhood distributions 
for the generative model.

In this work, we adopt a heuristic strategy for parameter 
selection that aims to approximate and incorporate previ-
ously identified salient autocorrelation features [59, 63, 64, 
71, 90–92, 94, 95, 111, 123, 124]. In short, the heuristics 
systematically target the shape and size of peaks close to 
the center of the autocorrelation. Figure 2 summarizes the 
four procedures we developed. The simplest, Fig. 2a, targets 
just the central peak.7 One, zero-mean mixture is used. The 
mixture’s covariance is parameterized by the length along 

its major and minor axis, ’a’ and ’b’ respectively, as well 
as the rotation of the principal frame with respect to the 
microstructure’s cartesian coordinate system, �.8 The sec-
ond, Fig. 2b, expands this basic parameterization, adding 
a second mixture that introduces layering [63]. The total 
parameter count is six: ’a’ and ’b’ for each mixture, � for 
the central mixture—the secondary peak’s angle is selected 
so that the peak remains parallel to the central peak as is 
shown in the figure, and a distance, ’L’, separating the two 
mixtures. The third, Fig. 2c, continues this pattern adding a 
second set of secondary peaks. Here, the parameterization 
is slightly different. All the secondary peaks share a covari-
ance parameterization, (’a2 ’, ’ b2 ’, ’ �2’), that is disconnected 
from the central peak. Additionally, the two secondary peak 
sets share a distance parameterization, L, measured radially 
from the center. The secondary peaks are spaced 90-degrees 
apart. Additionally, � controls the rotation of the entire set 
of secondary peaks around the center. This is a total of eight 
parameters. The last parameterization, Fig. 2d, extends the 
secondary peaks out to a predefined cutoff length. Here, the 
covariance parameters for all peaks were fully coupled and 
the covariance rotation was set to zero. This leaves a total of 
four parameters—including the lattice rotation and the spac-
ing. In addition to the identified structural parameters, we 
varied the volume fraction between (0.0, 0.5]. The remain-
ing volume fractions are simply recoverable by inverting 
the dataset. We emphasize that the simplicity of placing the 
Gaussian mixtures to construct each heuristic strategy is one 
of the major benefits of the proposed autocorrelation param-
eterization. Additionally, notice that the parameterization 
leads to an exponential explosion in the number of candidate 
autocorrelations. For example, the third strategy produces 
M9 candidates, where M is the discretization resolution of 
each parameter. Thinning using MaxPro is necessary.

Fig. 3  Visual summary of the foundational neighborhoods used to create the ten neighborhood distributions utilized during generation in this 
paper

7 This approximation is a generalization of PYMKS’ standard gen-
erative model [125].

8 The parameterization is numerically implemented as a standard 
eigenvalue decomposition of the covariance matrix where the eigen-
vector matrices are the euler rotation matrices.
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In addition to an identified autocorrelation, Local–Global 
Decomposition (LGD) generative models are parameterized 
by an identified neighborhood distribution. Theoretically, 
these local, neighborhood distributions are a shorthand sum-
mary of the higher-order statistics of the targeted material 
system [64]. Practically, these neighborhood distributions 
allow us to incorporate important local features and gener-
ate microstructures which mimic important material classes 
(e.g., fiber composites [99]—VoidSmall—and nickel-based 
superalloy [94]—NBSA). Here, we identify and utilize ten 
neighborhood distributions. We include a combination of 
prescribed, filter-based neighborhoods [63] and learned 
distributions [64]. Unlike in the original work, the pre-
scribed neighborhoods are not necessarily deterministic 
single geometric shapes, instead, we also used mixtures 
of shapes. Figure 3 visually summarizes five foundational 
neighborhood archetypes. These archetypes were combined 

together to form the ten final neighborhoods. Its important to 
emphasize that the ellipse, Voronoi grain, and Nickel-Based 
Superalloy (NBSA), Fig. 3a, d, and e, respectively, are just 
examples from each archetype class. For example, many dif-
ferent Voronoi grains were sampled and included. Table 1 
summarizes the ten neighborhoods. These ten were selected 
for two reasons. First, they approximate a wide diversity 
of material classes. Second, they contain some important 
expected challenges for existing Materials and Microstruc-
ture Informatics frameworks.9 We hope that this ensemble 
will provide inspiration for future development.

Table 1  Details of the 10 neighborhood distributions utilized in this study

Class label Generation parameters

Neighborhood Additional notes

GRF None The standard Multi-output Gaussian Random Field model [63]
NBSA Learned The hybrid LGD model described in Case Study 1 of Robertson et al. [64]. Here, the model’s usage 

is most similar to Sect. 5.2 in the original work—i.e., the learned neighborhood distribution, e.g., 
Fig. 3e, is maintained constant while the parameterizing autocorrelations are adjusted. For stability, 
this class’s volume fraction is limited to [0.34, 0.42]

AngEllipse Prescribed A single ellipse neighborhood distribution, Fig. 3a. The ellipse is rotated to align with the generating 
autocorrelation’s central peak. The major axis spans 10.5 voxels, and the minor axis ratio is 0.3

RandomEllipse Prescribed A mixture neighborhood distribution uniformly combining fifty ellipses, Fig. 3a, with orientation 
angles equally spaced in [0, 180). Same structural parameters as AngEllipse

VoidSmall Prescribed A single circle neighborhood distribution, Fig. 3b. The circle radius is 5.5 voxels
VoidSmallBig Prescribed A uniform (i.e., fifty-fifty) mixture of two circle neighborhood distributions, Fig. 3b, c. The circle radii 

are 5.5 and 8.5 voxels
VoronoiLarge Prescribed A uniform mixture of ten voronoi precipitate distributions, Fig. 3d. All ten precipitates are regenerated 

using a standard voronoi procedure [68] for each sampling. Significant overlap is allowed between 
placed precipitates. The average precipitate size is approximately 50 voxels

VoronoiMedium Prescribed Same as VoronoiLarge—average precipitate size is approximately 25 voxels
VoronoiMediumSpaced Prescribed Same as VoronoiMedium. Greater spacing between placed precipitates is enforced
VoronoiSmall Prescribed Same as VoronoiLarge—average precipitate size is approximately 14 voxels

Fig. 4  Four selected principal component projections of the curated autocorrelation dataset

9 For example, the class ’VoidSmallBig’ is nonstationary, breaking 
the stationarity assumption that accompanies many stochastic quanti-
fication frameworks. Similarly, the sharp edges in the Voronoi classes 
and the small features in the NBSA class will be difficult for localiza-
tion models [126], in particular those utilizing Fourier filters [127].
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Initial Autocorrelation Dataset

We generate an initial candidate autocorrelation set com-
prised of approximately 285, 000 autocorrelations using 
the four heuristic strategies described previously.10 Subse-
quently, we filter this using PCA and the MaxPro algorithm 
down to 10, 000 final autocorrelations to produce a space-
filling coverage. We retained 750 principal components in 
the PCA compression for spacefilling. Motivation for this 
level of truncation can be found in Appendix B. We stratify 

the filtering by volume fraction and parametric strategy to 
ensure equal contribution from each.11 Fig. 4 displays several 
selected PCA projections of the final autocorrelation dataset. 
It is important to note that each point in these projections 
corresponds to an entire autocorrelation map. Importantly, 
the dataset displays many characteristics of autocorrelation 
distributions that we expect from both previous study (e.g., 
[23]) and theoretical analysis (e.g., [111]). For example, the 
PC 1-PC 2 projection, Fig. 4a, displays the characteristic 

Fig. 5  Illustration of twenty 
selected microstructures gener-
ated using the standard GRF 
model (i.e., from the GRF class) 
conditioned with the identified 
autocorrelations

10 The exact parameter values—along with all the code necessary to 
generate the dataset—can be found in the GitHub repository identi-
fied at the end of the paper.

11 In particular, we noticed that if we did not employ volume fraction 
stratification the final autocorrelation dataset was strongly skewed 
toward higher volume fractions. We hypothesize that this is a finger-
print of the spacefilling under the L

2
-norm.
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sharp edge along the lower boundary of the distribution. 
This corresponds to autocorrelations for stochastic micro-
structure functions with small central features (i.e., where 
the autocorrelation approximates a dirac delta in real space). 
Additionally, in almost all projections, the dataset is convex. 
This indicates that the achieved coverage is largely uniform 
over a subspace of the 2-point statistics. The reasons for the 
few exceptions to this and the impact of these exceptions will 
be discussed in greater detail in Sect. 5.

MICRO2D

Conditioning the LGD generative model using the gener-
ated autocorrelation dataset and the ten identified neighbor-
hood distributions, we generate a microstructure dataset 
comprised of 87, 379 2-phase microstructures.12 We will 
refer to this final open-source large microstructure dataset 
as MICRO2D.13 Appendix C presents examples of randomly 
selected images from each microstructure class. The data-
set’s microstructures are periodic and are represented on a 
256 × 256 pixel grid.14

Figure 5 displays a selected variety of spatially diverse 
microstructures from MICRO2D generated using just the 
standard GRF model. Beyond visually observing the variety 

of achievable spatial distributions, this figure also depicts 
the impact of the different autocorrelation parameterization 
schemes. For example, Fig. 5s displays an example micro-
structure generated using the first scheme. It is characterized 
by highly localized features that lack any persistent long 
range structure because it was generated using a single mode 
autocorrelation. Contrasting Fig. 5k against Figs. 5e, i, we 
see the impact of the addition of the secondary peaks in 
the second and third strategies compared to just a single 
central peak in the first. In Fig. 5k the inter-black phase spac-
ing—approximately 28 voxels—is extremely regular and 
the black phase regions are also regularly aligned within 
each populated plane. This is a result of the strong statistical 
coupling introduced by the secondary peak; whenever there 
is a black phase region, this peak means we expect to find 
another black phase region aligned with it and separated by 
the inter-peak spacing [71, 123]. Similarly, this increase in 

Fig. 6  Illustration of synthetic microstructures generated from a single autocorrelation by varying neighborhood distributions. To make these 
figures, the seed of the GRF is artificially kept constant

12 The total number of microstructures is less than 100,  000 (i.e., 
10 × 10, 000 ) because several volume fraction and neighborhood 
combinations resulted in unstable generation, e.g., see NBSA in 
Table 1.
13 In the dataset, each class is stored separately to simplify studying 
subsets of the dataset.
14 We selected this specific discretization to balance the degree of 
achievable diversity against practical considerations. This resolu-
tion was sufficiently high to allow us to incorporate two important 
lengthscales: both salient individual features and long range patterns. 

However, it is sufficiently low to remain inline with the discretiza-
tions preferred by the microstructure informatics community (e.g., 
in Process-Structure–Property modeling [37, 72, 73, 79, 81–83] and 
synthetic generation [58, 65, 76, 80, 128]). Additionally, we construct 
our heuristic strategies to ensure that the chosen discretization is suf-
ficient to represent the generated systems. Primarily, we do this by 
ensuring that the correlation length of the generated statistics is less 
than half the domain size and by generating periodic microstructures. 
It is well established in the micromechanics community that periodic 
RVEs and SVEs provide highly stable estimates of homogenized 
properties even using relatively small domains [84, 129]. We note 
that the proposed framework is not restricted to this discretization and 
datasets containing smaller, larger, or even 3D microstructures can 
readily be generated without significantly altering the codebase ref-
erenced at the end of this paper. However, more advanced generation 
strategies will need to be established if one is interested in incorporat-
ing more than two feature lengthscales.

Footnote 14 (continued)
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structuring in the spatial arrangement occurs again when 
comparing microstructures from the third strategy with those 
from the fourth strategy. In Fig. 5c, d—generated using strat-
egy four—repeated, long range order is maintained over the 
entire microstructure. In contrast, in Fig. 5a, h, and g the 
structuring is much more localized. This is most evident in 
Fig. 5a where the relatively regular long range structure is 
commonly broken by large white phase pockets.

Beyond containing microstructures with diverse spatial 
arrangements and 2-point statistics, MICRO2D’s micro-
structural diversity also considers local feature diversity 
because of the local neighborhood distributions used in 
generation. This means that the dataset contains microstruc-
tures whose local features mimic several important material 
classes (e.g., fiber composites [99]). Figure 6 specifically 
exemplifies the microstructural diversity that is achieved by 
just exchanging neighborhood distributions but maintain-
ing a constant autocorrelation. The depicted microstructures 
are generated using a constant seed to maintain a constant 
sample from the GRF in the LGD model. We emphasize 
that the depicted microstructures are simply to illustrate the 
diversity achievable using neighborhood distributions and 
are not actually contained in MICRO2D. In MICRO2D, 
the seed is randomized for each sample (i.e., microstruc-
tures generated with the same autocorrelations but different 
neighborhoods will not have their neighborhoods placed 
in the exact same spatial regions.). Clearly, a wide diver-
sity of microstructures is achievable even when restricting 
generation to a single autocorrelation. For example, this 
combination produced microstructures with large distinct 
phases—e.g., Fig. 6a,j—as well as hierarchically clustered 
microstructures—e.g., Fig. 6f,g. We also see that the data-
set is systematically biased to contain microstructures with 
precipitate like structures reflecting the types of neighbor-
hoods selected.15

The magnitude and statistical arrangement of the gener-
ated diversity is clearer in PC space. Here, we begin with a 
standard MKS (i.e., autocorrelation and PCA) analysis [21, 

Fig. 7  Comparison of the saturation of the explained variance with 
increasing number of PC basis vectors between MICRO2D and the 
TAMU Spinodal dataset. Two separate PC bases are compared

Fig. 8  Comparison of the original autocorrelation dataset distribution 
(cyan) with the samples from the Gaussian Random Field (black) and 
the TAMU spinodal dataset (red). Each subfigure displays PC sub-
spaces from a standard 2-point statistics and PCA analysis performed 

on the entire MICRO2D dataset. The original autocorrelation dataset 
and the spinodal dataset are projected in after the fact and were not 
included in the generation of the PC basis

15 Other microstructures, like grain boundary structures, could be 
generated by the local diffusion model [64, 76].
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90, 91] of the entire MICRO2D dataset. The representa-
tional efficiency of the PCA dimensionality reduction pro-
vides an initial quantification of the achieved diversity. 123 
PC basis vectors are necessary to achieve 99.9% explained 
variance on the MICRO2D dataset. This is a significant 
increase in comparison with other available 2-phase micro-
structure datasets. For example, Marshall and Kalidindi [23] 
report requiring 10. Similarly, the PYMKS dataset requires 
2 [108, 126]. Researchers at TAMU recently generated a 
large, open-source spinodal decomposition dataset [73] for 
process modeling. This dataset requires 85 PC scores to cap-
ture the same amount of information for its 2-phase micro-
structures. In addition to requiring numerous basis vectors 
to achieve a high explained variance, MICRO2D’s variance 
is more evenly spread between the components than pre-
vious studies. For example, Fig. 7 contrasts the saturation 
of explained variance against number of PC basis vectors 
between MICRO2D and the TAMU spinodal dataset. The 
MICRO2D dataset displays slow saturation, indicating that 
each basis vector is well-sampled. In contrast, the spinodal 
dataset displays a sharp saturation which is consistent with 
previous efforts [23, 88].

Figure  8 contrasts the subset of microstructures in 
MICRO2D generated by the GRF with the autocorrelation 
dataset used to seed MICRO2D and the spinodal dataset.16 
Each point represents the entire autocorrelation map for a 
single microstructure. The PC basis was generated using the 
entire MICRO2D dataset. The autocorrelation dataset and 
spinodal dataset17 are projected into the PC basis afterwards 
and are not included in training. The GRF dataset displays 
good distributional agreement with the original autocorrela-
tion dataset. In fact, the GRF’s statistical scatter (extensively 
documented previously [63, 64]) causes the GRF distribu-
tion to cover a greater volume of the autocorrelation space 
than the original autocorrelation dataset, Fig. 8b. Unsurpris-
ingly, this is most noticeable in the lower PC scores. The 

Fig. 9  Comparison of coverage of the distribution of GRF class samples (black) with VoidSmall (cyan), VoronoiMedium (red), and VoronoiL-
arge (magenta). Each figure displays PC subspaces from a standard 2-point statistics and PCA analysis performed on the entire generated dataset

16 The TAMU microstructures are rescaled down to 256 × 256 for 
comparison.
17 The average relative L

2
 reconstruction error of the projection is 

0.0071 ± 0.0077 for the spinodal dataset. This is comparable with 
the reconstruction error of MICRO2D, Appendix  B. Therefore, the 
dataset is well represented by the basis. Additionally, including the 
spinodal dataset in training the PC basis did not change the structure 
of the latent space.
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GRF is prone to larger scatter in these subspaces because 
they are more sensitive to larger features (see Appendix B) 
[63, 64]. In comparison, the spinodal dataset is restricted 
to a smaller subset of the autocorrelation space. This fur-
ther supports the previous conclusion; the MICRO2D data-
set achieves a wide sampling of the autocorrelation space. 
Before continuing, we emphasize that, in our opinion, the 
spinodal dataset remains an extremely useful microstructure 
dataset and a important contribution to dataset curation: it 
is still very structurally diverse, it contains a large number 
of 3-phase microstructures which were excluded from this 
analysis, and, most importantly, it contains processing infor-
mation necessary for developing and benchmarking Process-
Structure linkages [92].

The remaining classes also display significant diversity. 
Like the TAMU dataset, their coverage is only a subset 
of the full GRF distribution. This occurs because of the 
coupling that exists between neighborhood distributions 
and 2-point statistics [64]. Figure 9 contrasts the cover-
age of three example classes—VoidSmall, VoronoiMe-
dium, and VoronoiLarge—against the GRF. The size of 
the features in the neighborhood distribution dictate each 
class’s coverage with respect to the GRF class distribu-
tion. For example, VoronoiLarge—whose neighborhood 
features are nearly one fifth of the RVE domain—dis-
plays strong agreement with the GRF class for the lower 
eigenvectors, Fig. 9i. Again, these are the eigenvectors 
which capture large feature differences. For higher index 
eigenvectors, the VoronoiLarge distribution becomes very 
tight, Fig. 9l, because the selected neighborhood precludes 

the introduction of small features. In contrast, VoidSmall 
displays the opposite behavior. The placed circles, e.g., 
Fig. 6e, breaks the homogeniety of large features. As a 
result, the spread on the lower eigenvectors is smaller 
than the GRF. The spread grows to eventually match the 
GRF for the higher eigenvectors, Fig. 9d. VoronoiMedium, 
unsurprisingly, displays an intermediate behavior, maxi-
mizing its agreement for intermediate indexes, Fig. 9f. It is 
important to emphasize that the small and medium feature 
neighborhoods still display large microstructural features 
due to hierarchical clustering. However, these features 
are not composed of a continuous phase as they are in 
the GRF; instead they are a tight collection of individual 
neighborhoods, Fig. 6. Therefore, they do not display the 
same coverage in the lower PC basis vectors because the 
larger aggregate cluster features are not smooth. This 
analysis also emphasizes that the initial PC variance met-
ric is only a rudimentary metric. Clearly, the large index 
PC basis vectors still contain important microstructural 
information and the true dimensionality of the MICRO2D 
dataset is much larger than just the initial 123 dimensions.

Importantly, the dataset is not just limited to second 
order diversity. Because we vary the neighborhood dis-
tribution during generation, the microstructure’s higher 
order statistics vary as well. We were unable to identify a 
subspace of the autocorrelations using PCA in which the 
10 classes could be distinguished [130]. Instead, we can 
see the importance of the classes and the present higher 
order variations in microstructure statistics by perform-
ing a standard MKS analysis using 3-point statistics18. 
Figure 10 contrasts the 3-point statistics of each of the 
non-GRF classes. The GRF class is excluded because it 
covers the entire space achieved by the remaining classes. 
The remaining classes are clearly separated in the 3-point 
statistics space. Note that the 3-point statistics space 

Fig. 10  Visual summary of the 3-point statistics coverage achieved by 
the generated dataset. All nine non-GRF classes are compared. The 
distribution of the GRF class engulfs the remaining classes

Table 2  Mechanical (young’s modulus) and thermal (conductivity) 
properties for each phase

Mechanical (GPa) Thermal (W/mK)

Phase 1 (black) Phase 2 (white) Phase 1 (black) Phase 2 (white)

10 1 10 1
100 1 100 1
1000 1 1000 1
1 10 1 10
1 100 1 100
1 1000 1 1000

18 We use an analysis congruent to the analysis reported in Robertson 
et al. [64]. Only the subset of 3-point statistics in which the first shift 
is equal to 3 are considered.
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displays clearly interpretable structure—similar classes 
are arranged next to each other and the feature size rec-
ognizably decreases with increasing PC 2 (i.e., shifting 
left to right in the image). The various generated classes 
provide a systematic method to study the impact of higher 
order statistics.

In total, the generated dataset displays significant diver-
sity with respect to 2-point statistics, neighborhood distri-
butions and higher order n-point statistics. Appendix C dis-
plays randomly sampled examples from each class.

Diversity in Property Space

Beyond providing the microstructures themselves, we also 
include a collection of 42 homogenized property values 
for each microstructure in the MICRO2D dataset. Specifi-
cally, these include homogenized orthotropic thermal and 
mechanical (elastic) coefficients.19 The simulations were 
performed using a standard periodic finite-element-based 

homogenization scheme [21, 90, 131, 132]. In both cases, 
both phases in the microstructure were treated isotropically. 
For each microstructure, 6 combinations of both constituent 
elastic and thermal property assignments were used. The Pois-
son’s ratio was kept constant in both phases (equal to 0.3).

For the mechanical properties, three simulations were 
performed for each constituent property set using different 
plane-stress boundary conditions: uniaxial tension (X-direc-
tion), uniaxial tension (Y-direction) and pure shear. These 
boundary conditions were selected to evaluate the homoge-
nized values of Ex , Ey , Gxy , �xy and �yx for each microstructure. 
All mechanical simulations were performed with an applied 
stress of 1MPa . In a similar manner, two thermal simulations 
were performed with an applied heat flux of 1W∕m2 in the 
X-direction and Y-direction, respectively. These simulations 
produced estimates of the homogenized thermal conductivi-
ties, kx and ky . Including the six different sets of constituent 
properties summarized in Table 2, a total of 30 simulations 
were performed for each microstructure. We included differ-
ent contrast ratios in our work because previous research has 
demonstrated that producing surrogate ML models for the 
homogenized properties becomes increasingly difficult as the 
contrast ratio between the phases increases [21, 133, 134].

Fig. 11  Visual summary of the distribution of MICRO2D’s homog-
enized properties against microstructure volume fraction. The Hill-
Paul theoretical bounds are included for context. The computed upper 
bound is demarcated using a cyan line and the lower bound is demar-

cated using a red line. Subfigures a–c summarize the property distri-
bution for the complete dataset. Subfigures d–f summarize the prop-
erty distribution for just the GRF class

19 Additionally, we computed localized elastic strain fields that are 
not included in the dataset due to the extreme memory cost. Inter-
ested readers should contact the authors.
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Figure  11 exemplifies the distribution of computed 
mechanical properties for the extreme contrast case 1000 : 1 
contrast ratio (black:white in, for example, Fig. 5). The first 
row summarizes the property distribution for the entire data-
set while the second row summarizes the distribution for just 
the GRF class. In addition, the first-order Hill-Paul bounds 
[135, 136] are reported in order to contextualize the achieved 
values. The extracted properties are presented as compli-
ance coefficients to facilitate comparison against these 
theoretical bounds. Reflecting on the first row, MICRO2D 
achieves good coverage of the displayed property space. This 

statement remained true for every property we checked. We 
emphasize that the framework was not designed to produce 
a coverage of any specific material property space. Instead, 
the framework—and the dataset—were designed to diversely 
cover the space of 2-point statistics. The diverse coverage of 
a wide variety of material properties is only achieved indi-
rectly. In this context, the achieved covered emphasizes an 
extremely valuable element of the dataset. The MICRO2D 
dataset is likely to automatically display diversity with 
respect to many materials properties—even those not con-
sidered here—because of the important role of 2-point 

Fig. 12  Trend of S
1111

 against increasing contrast ratio between the two phases. The far right contrast ratio, highlighted in (b), is the 1000:1 con-
trast ratio displayed in Fig. 11

Fig. 13  Illustration of the incomplete coverage produced by the 
adopted autocorrelation parameterization. a PC subspace projection 
of the original autocorrelation dataset. b A interpolated autocorrela-

tion contained in the unpopulated convex full of the dataset. c A pro-
jection of the autocorrelations of the GRF-class microstructures onto 
the subspace from (a)
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statistics in estimating the homogenized properties using 
statistical materials theory [60, 86, 88, 93, 96, 100, 101].

Contrasting the first and second rows of Fig. 11 illumi-
nates a similar trend as the one observed in the microstruc-
ture space. The GRF class displays the widest variety of 
homogenized properties. This reflects the flexibility of the 
GRF to achieve a variety of long range spatial patterns as 
well as local feature sizes. In contrast, the remaining classes 
cover subsets of the property space.

The incorporation of the neighborhood distributions is 
also important; variation in the neighborhood distribution 
can significantly shift the homogenized properties that char-
acterize a material. This is even true if the generating 2-point 
statistics are held constant. For example, Fig. 12 contrasts 
the homogenized S1111 of the ten artificial microstructures 
from Fig. 6. The right most contrast ratio—Fig. 12b—cor-
responds to the contrast ratio displayed in Fig. 11. Contrast-
ing the variation, it is clear that adjusting the neighborhood 
distribution, even when the generating 2-point statistics 
are maintained constant, causes a half order of magnitude 
change in the displayed property—nearly half the width of 
the theoretical bounds. This indicates that specific properties 
can likely be achieved by either varying the spatial statistics 
or the neighborhood distribution.

The achieved variation in the property space reflects the 
microstructural diversity of MICRO2D and highlights the 
importance of varying the 2-point statistics and the neighbor-
hood distributions. In Fig. 11d–f, we see that variation in the 
2-point statistics, even for a constant neighborhood distri-
bution and volume fraction, results in extremely significant 
shifts in homogenized properties.20 Similarly, variation in the 
neighborhood distribution, keeping the volume fraction and 
spatial statistics constant, also leads to large shifts, Fig. 12. 
By varying both, MICRO2D provides a holistic environment 
for studying complex Structure-Property linkages.

Discussion

The proposed framework represents a tremendous advance 
toward developing a systematic method for exploring the 
microstructure space. Using the framework, we were able 
to generate an open-source dataset displaying tremendous 
variability in its constituent 2-phase microstructures as 
well as in its homogenized material properties. However, 
we see this work as one initial effort in the ongoing drive 
toward data curation in Materials Informatics.

In this paper, we argue that diverse datasets should be 
curated with respect to a statistical measure—we used 
autocorrelations. The sheer magnitude and complex con-
straints of the space of autocorrelations make it extremely 
challenging to cover this space and quantitatively decide 
whether a diverse coverage has been achieved. Of course, 
this problem is not unique to the space of autocorrelations; 
we would expect this problem to be further exacerbated for 
full 2-point statistics needed in multiphase (with more than 
two phases) and/or polycrystalline material systems [88] as 
well as higher-order statistics (e.g., 3-point statistics). As 
an initial test, there are some simple measures that can be 
used to grade the coverage. For example, Niezgoda et al. 
[71] demonstrate that the space of autocorrelations is con-
vex. Our earlier analysis showed that the initial autocorre-
lation dataset (recall that this dataset was used to generate 
MICRO2D) is convex in most projections. However, this is 
not always the case. Figure 13a displays a PC subspace pro-
jection of the autocorrelation dataset, which clearly shows a 
non-convex “butterfly” structure. This is a clear indication 
that the initial autocorrelation coverage is incomplete. In 
fact, this intermediate gap is a result of limitations in the 
proposed parameter generation scheme. We can explore the 
gap by interpolating between autocorrelations on its left and 
right. While the left and right butterfly wings contain auto-
correlations with single central features, the gap contains 
autocorrelations with multiple, orthogonal central peaks, 
e.g., Fig. 13b. It was largely unexplored because our genera-
tion scheme only included single central peaks. However, we 
emphasize that in practice this identified gap is very small; 
in fact, during generation, it is largely filled by the random 
scatter in the GRF, Fig. 13c. Even though this specific exam-
ple was largely inconsequential, it emphasizes an important 
point. It is extremely unlikely that the coverage is complete 
(the gaps in the property space confirm this). This is espe-
cially true because we are passively producing a coverage by 
using expert knowledge to guide generation. Active strate-
gies (e.g., active space filling [139, 140] and output driven 
coverage [108, 141]), in which generation is systematically 
optimized, are likely necessary to fill these unknown gaps. 
We emphasize that the development of the frameworks nec-
essary to do this and whether or not it is even necessary are 
significant open problems given the high dimensionality and 
complex constraints of these spaces.

Conclusions

In this work, we present a computational framework for 
directly curating statistically diverse big 2-phase micro-
structure datasets. In addition, we introduce an open-source 
large, statistically diverse microstructure dataset intended to 
enable future microstructure informatics efforts. The core 

20 In practice, such second order variability arises in many important 
material classes and is important to study to achieve desirable proper-
ties (e.g., rafting in nickel superalloy [137, 138]).
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theoretical contribution of the framework is a passive strat-
egy for generating an efficient coverage of the space of auto-
correlations. The strategy has two components. The first is a 
flexible, parametric approximation of an arbitrary autocor-
relation. The approximation is presented in algorithmic form 
in Eqs. (5)–(10). Importantly, this parameterization provide 
a highly intuitive mechanism for systematically constructing 
valid, synthetic autocorrelations. The second element is a 
MaxPro-based thinning procedure that identifies an efficient, 
space-filling coverage from a candidate set of autocorrela-
tions produced using this parameterization. The framework 
performs dataset curation by combining this sampling pro-
cedure and a set of identified neighborhood distributions 
with established statistically conditioned generative models 
[63, 64].

To demonstrate the proposed framework, we synthesize 
a second-order diverse, large, 2-phase microstructure data-
set, MICRO2D. We analyze the dataset’s 2- and 3-point sta-
tistics to quantify the achieved diversity. In addition to the 
microstructures, we provide several important homogenized 
properties for each microstructure that could be used as 
regression targets for future learning problems. In addition to 
microstructural diversity, MICRO2D encloses a large range 
of theoretically-possible homogenized property values. This 
achievement demonstrates the clear value in using n-point 
statistics as a statistical measure for constructing the dataset. 
Because of their relationship to statistical materials theory 
[60, 61], diversity with respect to the n-point statistics indi-
rectly guarantees diversity with respect to arbitrary material 
properties. This allows us to avoid the painful process of tar-
geting properties individually when creating the dataset and 
instead focus exclusively on the microstructural domain. In 
theory, this connection means we expect MICRO2D to dis-
play diversity even with respect to unconsidered properties.

Finally, we end with a discussion of the dataset gen-
eration problem. We emphasize, again, that this study 
represents just an initial step in generating second-order 
statistically-diverse datasets. Many important research paths 
remain. First, for practical reasons, the generated dataset 
contains microstructures limited to a constant resolution 
and a 256 × 256 pixel discretization. In addition, the LGD 
generation strategy incorporates two important lengthscales 
of features: long range spatial patterns and local neighbor-
hood distributions. Arbitrary real experimental microstruc-
tures can contain much more complex hierarchies of fea-
tures which require larger discretizations to capture. We 
need more advanced generative models and dataset cura-
tion strategies to consider these complex systems. Second, 
a clear definition of “sufficient diversity” in the autocorrela-
tion space remains a challenging open question due to the 
extreme dimensionality of this space. Further, for practi-
cal engineering purposes, it would be extremely useful to 
extend this to systems with more complex local states, such 

as polycrystalline microstructures. It remains unclear how 
to extend the proposed autocorrelation parameterization to 
more complex states. The generated dataset is also only 
well-sampled in a second-order sense, despite some higher-
order diversity being introduced via the neighborhood dis-
tributions. Extension to higher-order statistics would incor-
porate structures with nonlinear long range patterns (e.g., 
copolymers [65, 66, 76]).

Appendix A: Real Space Mixtures

The mixture method adopted in this paper differs slightly 
from the approach adopted historically in Spectral Mixture-
based Gaussian Process Regression modeling [97, 98]. Spe-
cifically, instead of constructing the kernel function via a 
mixture model approximation to a probability density in the 
frequency space (e.g., a Symmetric Gaussian mixture model 
[97]), we approximate the kernel using a real-space sym-
metric Gaussian mixture model and, subsequently, enforce 
the spectral requirements of the kernel function via two 
linear projections. This approach takes the following path. 
The approximate kernel function, k̂(�) , is constructed via a 
mixture of symmetric Gaussians.

Here, � and � are the mean and covariances of each mixture. 
| ⋅ | is the determinant operator. The mixture weights, �i , are 
selected to add to unity.

An approximate kernel structure of this form produces 
the following expression when transformed into frequency 
space [142].

Here, superscripts refer to exponentiation not indexing. Note 
that this produces the inverse of the kernel structure pro-
posed by Wilson and Adams [97]—with the cosine fluctua-
tions in the frequency space instead of the real space. This 
kernel structure meets only one of the minimum require-
ments outlined in Sects. 2.2 and 2.1: it is real valued. The 
presence of the cosine fluctuations introduces negative 
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values in the spectrum. These fluctuations are removed by 
zeroing the negative values [92].

Here, � is a near zero, positive value added for computa-
tional stability of the subsequent steps. Finally, the gener-
ated kernel function is produced by applying the inverse 
cosine transform, C−1[⋅] . This operation returns the real 
space equivalent of the kernel without introducing spurious 
imaginary components in either the real or Fourier space 
representation of the kernel. In practice, we discretely sam-
ple the approximate covariance kernel, k̂(�) , in real space 
to a discrete covariance kernel, k̂r , and, subsequently, apply 
the two identified projections discretely. This procedure pro-
duces the following set of expressions.

Here, �r is the value of � at the center of pixel r. The auto-
correlation is derived from the kernel function via addition 
of the mean squared [63].

As noted in the main body of the paper, we used this alter-
native structure instead of the traditional method for two 
important reasons. Most importantly, the traditional Fourier-
space mixture model produces spatially compact real-space 
kernels. This means that it cannot easily produce kernels 
with multiple modes. Mathematically, this is clear in the 
original real-space expression provided by Wilson and 
Adams [97] (here, for simplicity, we reproduce the 1D sin-
gle mixture expression).

Clearly, the dominant exponential term has zero mean. As a 
result, this type of kernel cannot easily reproduce the impor-
tant longer range peaks (for example, secondary peaks in 
layered composites that statistically represent the repetition 
of the layering [63]) that are present in 2-point statistics 
maps [90, 94, 123]. In contrast, our real-space formulation 
can directly construct these secondary peaks via the direct 
placement of the means of the individual symmetric mix-
tures. The second reason is practical and an extension of 
the first: in real space, we can use our expert knowledge of 
2-point statistics [21, 72, 88, 90, 92, 93, 123] to guide the 
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placement of the symmetric mixtures into common regions. 
The unfamiliar nature of the Fourier representation makes it 
challenging to embed domain knowledge into the construc-
tion of the kernel function (and, by extension, the autocor-
relation). Of course, this second reason would be irrelevant 
if one was using an optimization-based placement strategy 
for the mixtures instead of an expert driven one.

Appendix B: PCA Truncation for MaxPro 
Filtering

We used PCA to perform distance preserving dimensionality 
reduction of the initial candidate autocorrelation set. This 
facilitated the framework’s spacefilling filtering operation 
by significantly decreasing the computational expense of 
the Min–Max optimization central to the MaxPro algorithm 
[113]. Importantly, the extracted latent space must be a good 
approximation of the original 2-point statistics. Therefore, it 
must have sufficient representational capacity to recreate the 
original autocorrelations’ salient features with high fidelity. 
Recent work by Generale et al. observed that PCA is rela-
tively inefficient for generative tasks like this one [21]. As a 
result, we expect the number of necessary principal compo-
nents to be quite high. We selected the truncation level for 
the number of principal components by tracking the recon-
struction error (the relative L2 error—i.e., the L2 distance 
between a proposed autocorrelation and the reconstruction 
from the principal component basis normalized by the L2 

Fig. 14  Trend of the average reconstruction error (the relative L
2
 

error) as a function of the number of retained principal components
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magnitude of the original autocorrelation) of the original 
candidate autocorrelation dataset. Figure 14 summarizes the 
relative error. We selected a truncation level of 750, achiev-
ing an average reconstruction error of approximately 0.75%.

Additionally, we also explored the average feature size 
of stochastic microstructure functions differentiated by 
each eigenvector. Here, our aim was to ensure that the 

selected principal component basis was sensitive to every 
feature lengthscale in the initial candidate autocorrelation 
set. This is important to check because PCA is known to 
filter out short lengthscale (i.e., high frequency) features 
[112, 143–145]. For several eigenvectors, we identified a 
set of diverse autocorrelations with respect to the selected 
eigenvector. We did so by performing spacefilling in just the 
subspace defined by that eigenvector using the described 
MaxPro procedure. Then, we used Berryman’s method [63, 
146, 147] to estimate the feature size of microstructures 
corresponding to the identified autocorrelations. Figure 15 
depicts the trend. Importantly, the decay largely stabilizes 
well before the 750th eigenvector. Therefore, we expect this 
selected cutoff to create a subspace which is sufficiently 
sensitive to all salient lengthscales in the candidate auto-
correlation set. We also note that the trend displays largely 
monotonic decay—i.e., lower index eigenvectors correspond 
to larger features.

Appendix C: Examples from MICRO2D

Here, we simply display a collection of randomly selected 
examples from each class in the MICRO2D dataset: 
GRF—Fig. 16, NBSA—Fig. 17, AngEllipse—Fig. 18, 
RandomEllipse—Fig. 19, VoidSmall—Fig. 20, VoidS-
mallBig—Fig. 21, VoronoiLarge—Fig. 22, VoronoiMe-
dium—Fig.  23, VoronoiMediumSpaced—Fig.  24, and 
VoronoiSmall—Fig. 25.

Fig. 15  Trend of the expected feature size as a function of the princi-
pal component index
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Fig. 16  Eighty randomly 
selected microstructures cor-
responding to the GRF class
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Fig. 17  Eighty randomly 
selected microstructures cor-
responding to the NBSA class
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Fig. 18  Eighty randomly 
selected microstructures cor-
responding to the AngEllipse 
class
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Fig. 19  Eighty randomly 
selected microstructures cor-
responding to the RandomEl-
lipse class
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Fig. 20  Eighty randomly 
selected microstructures corre-
sponding to the VoidSmall class
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Fig. 21  Eighty randomly 
selected microstructures cor-
responding to the VoidSmallBig 
class
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Fig. 22  Eighty randomly 
selected microstructures cor-
responding to the VoronoiLarge 
class
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Fig. 23  Eighty randomly 
selected microstructures cor-
responding to the VoronoiMe-
dium class
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Fig. 24  Eighty randomly 
selected microstructures cor-
responding to the VoronoiMedi-
umSpaced class
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Fig. 25  Eighty randomly 
selected microstructures cor-
responding to the VoronoiSmall 
class
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