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ABSTRACT
Additive manufacturing is increasingly being employed to produce components 
of complex geometries in structural alloys because of the expected energy savings 
associated with the near-net-shape capability and the ability to build in novel 
internal features that are not possible with many conventional manufacturing 
approaches. However, because of the extreme thermal conditions encountered, 
the non-equilibrium microstructures produced during powder bed-based addi-
tive manufacturing processes must be subjected to custom post-heat treatment 
processes to recover the target mechanical properties. Phase-field models and 
simulation techniques have matured to a state where the microstructure evo-
lution paths, and the morphologies of the resulting precipitate phases can be 
predicted reasonably accurately, considering alloy-specific thermodynamic and 
kinetic aspects of the nucleation and growth processes. However, phase-field 
simulations are computationally intensive, which precludes the ability to apply 
the simulations directly to the length scale of the entire component. Therefore, it is 
highly desirable to develop low-computational-cost surrogate models that effec-
tively capture the physics at the microstructural length scale, while facilitating the 
design of optimized processing conditions resulting in location-specific targeted 
microstructures at the component scale. The work presented here demonstrates 
the application of the materials knowledge system framework to develop a surro-
gate model that effectively captures the microstructural path during annealing of 
a Ni–Mo–Nb alloy containing different Mo and Nb compositions known to segre-
gate during solidification under additive manufacturing conditions. Specifically, 
the surrogate model built in this work is based on a Gaussian process autoregres-
sive model informed by statistical representation of simulated microstructures 
using two-point correlations and dimensionality reduction through principal 
component analysis. This surrogate model is shown to capture the bifurcation 
of the microstructural path during precipitation, which yields a microstructure 
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dominated by the � ′′ phase at high Nb concentrations and the � phase at low Nb 
concentrations.

Introduction

Post-processing heat treatments are integral to the pro-
duction of structural alloys and are essential to attain-
ing the desired in-service mechanical properties. It is 
especially critical for components made using powder 
bed-based additive manufacturing processes, where 
the rapid melting and solidification, and repeated 
thermal excursions in the solid-state result in non-
optimum microstructures that need to be modified 
through customized heat treatment steps [1]. During 
such heat treatments, phase transformations often 
occur and form new precipitates of varying sizes and 
shapes organized in various geometrical patterns; 
these details are often collectively referred as micro-
structural details. Traditionally, physics-based mod-
elling approaches such as phase-field methods have 
been employed to understand the complex microstruc-
tures resulting from such transformations [2–6]. How-
ever, these approaches are computationally expen-
sive, limiting their ability to explore comprehensively 
the complete range of microstructures that could be 
produced through variations in the overall chemical 
compositions and process histories. Although simpler 
approaches based on thermodynamics and kinetics-
based models are computationally cheap, they often 
fail to capture the complex microscale interactions 
involved in such phase transformations and the key 
features in the resulting microstructures.

Because of the challenges described above, it is 
highly desirable to mine low-computational-cost 
surrogate process–microstructure evolution models 
trained on datasets produced using limited sets of the 
computationally expensive phase-field simulations. 
The main advantage of these surrogate models is that 
they facilitate the practical exploration of inverse solu-
tions identifying specific microstructures and process 
parameters that result in the desired microstructures 
[7]. The primary challenge in formulating the desired 
surrogate models described above lies in the lack of a 
rigorous framework for the quantitative description 
of the microstructures. The complete description of 
a microstructure is inherently high-dimensional. For 
example, a voxelized two-phase 3-D microstructure 
with 100 × 100 × 100 voxels would have a dimension-
ality of  106. Such high-dimensional representations 

pose major challenges to the successful extraction of 
low-computational-cost surrogates. However, it is also 
intuitively understood that high-dimensional repre-
sentations capturing the full details of the microstruc-
ture are unwarranted for most practical applications.

Conventionally, microstructures have been quan-
tified using grossly simplified metrics such as phase 
volume fractions, average precipitate size, and aver-
age precipitate shape [8–11]. Such selections of micro-
structure measures are not necessarily optimized for 
maximizing the amount of microstructure information 
captured. In other words, it is entirely possible that 
the simplified approaches to microstructure quanti-
fication can lead to highly correlated microstructure 
measures that capture partially redundant informa-
tion. More importantly, these simple measures do not 
offer a tunable approach for capturing systematically 
the higher-order microstructural information needed 
to predict the effective material properties of interest 
to desired accuracy [7].

In recent years, the materials knowledge systems 
(MKS) framework [7] has been developed to address 
the critical need identified above. MKS uses higher-
order spatial correlations [12–15] as statistical descrip-
tors of the microstructure together with powerful 
dimensionality reduction [16–19] algorithms (e.g. prin-
cipal component analysis (PCA)) to generate practi-
cally useful low-order microstructure descriptors (i.e. 
salient features of the microstructure). These protocols 
maximize the capture of the variance in a given ensem-
ble of microstructures in very few metrics (i.e. PC 
scores), and thereby support the efficient development 
of low-computational-cost surrogates [20–23]. The 
MKS framework directly addresses the high dimen-
sionality challenge identified earlier with microstruc-
ture representation [7, 24, 25]. Most importantly, the 
MKS framework leads to the representation of a con-
tinuous microstructure space. This is because the PC 
representations of spatial correlations result in a con-
vex space [26, 27], where one can interpolate between 
known PC representations of microstructures to pro-
duce valid representations of new microstructures. 
The MKS framework has already been demonstrated 
for a number of applications in materials discovery 
and development. However, they have largely been 
focused on establishing predictive models connecting 
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the material microstructure with its mechanical and 
functional properties [28–31]. The MKS framework 
has been used to predict the (quasi-)steady-state 
microstructures corresponding to a set of input pro-
cess parameters [32, 33]. However, there have only 
been limited applications of the MKS framework for 
capturing the quantitative linkages between process 
variables and the time-evolving material microstruc-
ture [34–36]. This is not only due to the complexities 
described above in the quantitative representation of 
the microstructures, but also because of the need for 
sophisticated surrogate model building approaches for 
capturing the temporal evolution of the microstructure 
as a function of the input process variables.

Gaussian process autoregressive (GPAR) models 
combined with the MKS framework offer tremendous 
promise for capturing the details of microstructure 
evolution as a time series model. Specifically, GPAR 
offers a nonlinear nonparametric modelling technique 
for producing time series surrogates. Yabansu et al. 
[36] demonstrated the benefits of GPAR in capturing 
the microstructure evolution of polycrystalline ceram-
ics during a sintering process simulated by phase-
field models. These authors utilized chord length 
distributions (CLDs) to quantify the material micro-
structure and employed a local GPAR approach for 
building the desired surrogate models. Hashemi et al. 
[34] employed a global GPAR approach for captur-
ing the details of the microstructure evolution during 
static recrystallization in polycrystalline metals simu-
lated using cellular automaton. These authors used 
two-point spatial correlations and PCA to obtain the 
needed reduced-order microstructure representations. 
The same approach was subsequently demonstrated 
for capturing the details of microstructure evolution 
in face-centred cubic (FCC) polycrystalline microstruc-
tures subjected to arbitrary stretching tensors [37]. 
These prior applications explored only uncoupled 
GPAR models, which assumed that the evolution of 
each PC score depended only its own history without 
any influence of the other PC scores. These uncoupled 
MKS-GPAR surrogates are quite attractive because of 
their low overall computational cost (both in training 
and in predictions for new inputs) and high fidelity. 
Deng et al. [38] used GPAR for predicting the state 
of charge (SOC) in a lithium-ion battery pack. These 
authors first computed Pearson correlation coefficients 
between several key time series signals (e.g. cell volt-
age) and the SOC. PCA was then used to transform the 
high-dimensional correlations into low-dimensional 

features that served as regressors for the GPAR model. 
The constructed GPAR model displayed low error for 
the real-time prediction of the state of charge and was 
successfully employed for self-correcting in cases 
where an inaccurate initial state of charge value was 
provided.

Our goal in this paper is to demonstrate the feasi-
bility and benefits of the MKS-GPAR framework for 
capturing the salient details of microstructure evolu-
tion in post-heat treated, multi-phase, AM (additively 
manufactured)-processed samples. AM processes 
are being extensively explored for several critical 
structural components made from advanced alloys, 
including Ni-based superalloys. In these applications, 
the as-fabricated components almost always require 
post-heat treatments to attain the target mechanical 
properties [39–42]. In this work, the MKS approach is 
used to obtain efficient low-dimensional representa-
tions of phase-field simulated microstructure evolu-
tion in heat treatment of a Ni–Mo–Nb alloy containing 
Nb-enriched regions typical of the compositions of the 
intercellular regions of the structure produced during 
AM solidification. The Ni–Nb–Mo ternary alloy was 
chosen in this study because it has the potential to be 
used as a surrogate alloy that captures the features 
of solidification of the nickel base superalloy 625 that 
involve the segregation Nb and Mo to the liquid. The 
long-term goal of the research is to capture the cel-
lular solidification microstructure using phase-field 
simulations and use these as input microstructures to 
simulate solid-state precipitation characteristics and 
to relate the precipitation to the predictions of the 
GPAR model for a complex multi-component alloy 
such as 625 and other nickel base alloys such as 718. 
However, this requires generating a vast amount of 
simulation data involving several microstructural and 
processing variables and the data analytics using the 
PCA–GPAR framework will become very complicated. 
Our goal was to define a simple, yet challenging prob-
lem using a limited set of variables to demonstrate the 
PCA–GPAR approach on a smaller simulation dataset. 
Since model Ni–Mo–Nb system is also able to capture 
the competitive precipitation of � and � ′′ upon anneal-
ing at 870 °C, similar to the experimental data shown 
in [43] for 625, the co-precipitation and bifurcation in 
the precipitation path was used as the test problem for 
the GPAR model.

In these simulations, a tetragonal � ′′ phase and an 
orthorhombic � phase are precipitated in the FCC � 
matrix phase [44–47]. Each of these phases has a number 
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of associated crystallographic variants. The � ′′ phase has 
three crystallographic variants, with one variant corre-
sponding to each of the three {100} habit planes [48]. The 
� phase has twelve crystallographic variants, with three 
variants corresponding to each of the four {111} habit 
planes [46]. The precipitation of � ′′ satisfies the cube-on-
cube orientation relationship (OR) (100)�

��

//(100)� and [
100

]�′′//[100]� , while the precipitation of � satisfies the 

OR (010)�//(111)� and 
[
100

]�//
[
110

]�
[46]. The transforma-

tion strain, gradient coefficient and the elastic constants 
of the precipitate variants are rotated from the local 
frame of the precipitate to the computational frame 
using appropriate rotation matrices based on the lattice 
correspondence between the precipitate and the matrix 
as defined in references [46] and [48]. The precipitation 
of � phase has been associated with poor mechanical 
properties [49] in wrought Ni-based superalloys. During 
powder bed-based metal additive manufacturing pro-
cesses, it is possible to obtain heterogeneous microstruc-
tures with co-precipitation of � ′′ and  �  inside the FCC 
� matrix. Successful capture of high-fidelity microstruc-
ture evolution paths [50, 51] in such complex alloys are 
expected to open new avenues for AM alloy design 
through optimized post-AM heat treatments [52]. Prior 
work has already shown that the precipitation of the � 
phase relative to the � ′′ phase is strongly influenced by 
the alloy’s Nb concentration [45, 49]. In this paper, 
phase-field simulations are performed to capture 
solid–solid phase transformations over a range of Nb 
compositions in Ni–Mo–Nb ternary alloys using the 
MEUMAPPS code [53–55] developed at Oak Ridge 
National Laboratory. Specifically, a limited number of 
datasets were produced using this code and were used 
successfully to train an MKS-GPAR surrogate model 
capturing the salient details of the microstructure evolu-
tion in the selected material system and process.

Methods

Phase‑field simulations

In the MEUMAPPS phase-field model, the total free 
energy of the system, G , is defined as

where G
ch

 is the chemical energy, G
int

 is the interfacial 
energy, G

grad
 is the gradient energy, and G

el
 is the elas-

tic energy. The chemical energy is given by

(1)G = G
ch

+ G
int

+ G
grad

+ G
el

where G� is the Gibbs free energy of the � matrix phase, 
G
�
′′ is the Gibbs free energy of the � ′′ precipitate phase, 

and G� is the Gibbs free energy of the � precipitate 
phase. �

p
≥ 0 is the phase-field order parameter for the 

p
th crystallographic variant, where p takes only posi-

tive integer values. The values of G�
,G

�
′′

, andG
� are 

fitted to quadratic functions of the concentrations of 
the solute elements using data from CALPHAD (i.e. 
TCNi8 database in ThermoCalc) [56, 57]. For this 
work, 1 ≤ p ≤ 3 corresponds to the three � ′′ crystallo-
graphic variants, while 4 ≤ p ≤ 15 correspond to the 
twelve � crystallographic variants. h

(
�
p

)
 is an interpo-

lation function expressed as

The interfacial energy is defined as

where ��
′′ and �� define the energy well between the 

matrix and the  � ′′ and  � phases, respectively, and �
p
 is 

the energy well between any two phase variants. The 
gradient energy is defined as

where �p represents the second-rank interfacial energy 
tensor for the pth crystallographic variant. For this work, 
�
p is specified by three diagonal values in the crystal 

frame, along the (100), (010), and (001) directions. 
The elastic energy calculation is performed using the 
approach of Steinbach and Apel [58], and is defined as

where �el,p
ij

 is a component of the total elastic strain 
tensor in the precipitate variant p , Cp

ijkl
 is the elastic 

(2)

G
ch

=

⎡⎢⎢⎣
1 −

15�
p=1

h

�
�
p

�⎤⎥⎥⎦
G
�
+

3�
p=1

h

�
�
p

�
G
���

+

15�
p=4

h

�
�
p

�
G
�

(3)h

(
�
p

)
= �

3

p

(
6�

2

p
− 15�

p
+ 10

)

(4)

G
int

= �
�
��

3∑
p=1

�
2

p

�
1 − �

p

�
2

+ �
�
∑

15

p=4
�
2

p

�
1 − �

p

�
2

+ �
p

15∑
i=1

∑
15

j≠i
�
2

i
�
2

j

(5)G
grad

=
1

2

15∑
p=1

∇�
T

p
�
p
∇�

p

(6)

G
el
=

15�
p=1

h

�
�
p

�
1

2

�
el,p

ij
∶ C

p

ijkl
�
el,p

ij
∶ �

el,p

ij

+

⎛⎜⎜⎝
1 −

15�
p=1

h

�
�
p

�⎞⎟⎟⎠
�
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ij
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m

ijkl
∶ �
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stiffness tensor for precipitate variant p , �el,m
ij

 is the elas-
tic strain tensor in the matrix phase, and Cm

ijkl
 is the 

elastic stiffness tensor for the matrix phase. The total 
elastic strain �el

kl
 is given by,

where �
kl

 is the homogeneous strain, which is a meas-
ure of the macroscopic deformation in the system, 
the second term on the right-hand side is the lattice 
inhomogeneous strain, and �∗

kl
 is the eigenstrain. In the 

current simulations,  �
kl

 is taken to be zero since mac-
roscopic deformation due to externally applied strain 
is not considered. The elastic strain energy calculation 
explicitly considers the elastic constants of the matrix 
and the individual precipitates based on their crys-
tal structure. All calculations are done inside a single 
matrix grain oriented in the computational frame. The 
eigenstrain and gradient coefficients for a given phase 
are usually prescribed on a local frame based on the 
orientation relationship between the matrix and the 
phase based on its crystal symmetry. These are rotated 
to the computational frame using the corresponding 
rotation matrices.

The evolution equations solved are the time-depend-
ent Ginzburg–Landau (TDGL) equation and the diffu-
sion equation. The TDGL is expressed as

where L
�
 is the phase-field mobility, Ñ is the total 

number of variants that coexist at any mesh point (i.e. 
number of variants with 𝜙

p
> 0 ), and the functional 

derivatives are defined as �G∕�� = �G∕�� − ∇ ⋅ �G∕�(∇�) . 
The above formulation of the TDGL assumes that the 
constraint 

∑
Ñ+1

p=1
�
p
= 1 is satisfied at every mesh point, 

including the matrix. In the current simulations, this 
is enforced by setting 

∑
Ñ

p=1
�
p
≤ 1 − �  , where � is set to 

 10–4. This approach allows sufficient soft impingement 
to occur between precipitates, while a small fraction 
of the matrix phase is retained between the impinging 
precipitates so that the local microstructural environ-
ment is consistent with the assumptions used in the 
phase-field model formulation. As already mentioned, 
the material selected for this study is a ternary 
Ni–Mo–Nb alloy. The relevant diffusion equation is 
expressed as

(7)�
el

kl
= �

kl
+

1

2

[
�u

k

�r
l

+
�u

l

�r
k

]
− �

∗

kl

(8)
𝜕𝜙

p

𝜕t
= −

L𝜙

Ñ

Ñ∑
p≠q

�
𝛿G

𝛿𝜙
p

−
𝛿G

𝛿𝜙
q

�

where M
Mo

 and M
Nb

 are the mobilities of Mo and Nb, 
and �

Mo
 and �

Nb
 represent the chemical potentials of 

the species in each phase. The Kim–Kim–Suzuki (KKS) 
formulation requires the calculation of the Mo or Nb 
compositions at the various diffuse interfaces between 
phases using the equal chemical potential assumption, 
�
Nb,Mo

=
�G

�

�C
�

Nb,Mo

 . This requires solution to N
S
 × N

P
 

simultaneous equations where N
S
  is the number of 

solutes and N
P
 is the number of phases in the system. 

Representing the Gibbs free energies in the quadratic 
form leads to a system of linear equations. The evolu-
tion equations are solved using an established semi-
implicit Fourier spectral technique [59]. Parallel imple-
mentation of MEUMAPPS-SS on the ORNL 
supercomputer Summit was accomplished via mes-
sage passing interface and the use of a parallel three-
dimensional fast Fourier transforms (P3DFFT) pack-
age [60]. MEUMAPPS-SS shows excellent scaling over 
thousands of CPU cores in Summit [61].

Nucleation model

Nucleation is a necessary step in carrying out the 
phase-field simulations and often poses significant 
challenges. Since the phase-field simulations are based 
on minimizing the total system energy, they cannot 
capture the increase in the system energy required to 
overcome the activation energy required for nuclea-
tion. Nucleation occurs at the atomistic level by the 
random formation of transient clusters that become 
supercritical nuclei. Often the clusters have a crystal 
structure that is different from that of the equilibrium 
solid. While in a pure metal, the clusters are of the 
same composition as the parent matrix, in the case of 
alloys the composition as well as the crystal structure 
within the clusters goes through a complex sequence 
of changes to transition from a series of metastable 
phases to nuclei of the equilibrium phase. In addition, 
the shape of the nucleus at every stage of this sequence 
is governed by the anisotropy in the interfacial energy 
and the elastic strain field in the vicinity of the nucleus. 
These elastic strain fields could be either due to the 
existence of another phase or defects such as dislo-
cations, point defects, or grain boundaries. Often the 
problem is not tractable using atomistic simulations 
such as molecular dynamics or kinetic Monte Carlo 

(9)
�C

Mo,Nb

�t
= ∇ ⋅M

Mo,Nb
∇�

Mo,Nb
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because each has its own limitations in capturing the 
true physics at the concerned length and timescales. 
In phase-field simulations, it is customary to imple-
ment the nucleation step using either a Langevin noise 
model, which introduces a stochastic perturbation 
term in the Ginzburg–Landau and the Cahn–Hilliard 
equations [62] or an explicit Poisson seeding model 
[63], which introduces nuclei as critical, diffuse, geo-
metric (i.e. shaped) fluctuations in the order param-
eter and composition fields. Even though Langevin 
noise approach works reasonably well at high under-
cooling where small fluctuations become critical, it 
is difficult to implement at low undercoolings where 
large perturbations are required to form the nuclei. 
It is also somewhat limited in physical insight. The 
explicit nucleation approach captures better the size 
and number density of the critical nuclei. However, 
it becomes very difficult to implement when there 
are additional complexities due to the presence of 
multiple crystallographic variants and variant selec-
tion based on dynamically varying strain fields. This 
is particularly relevant to the present study, where 
there are 15 crystallographic variants in total, and the 
strain energy associated with nucleation of each vari-
ant could be modified by the presence of other pre-
existing variants.

In the current simulations, the activation energies 
for nucleation of the � and � ′′ phases are different, 
and are dependent on the Nb content in the alloy. The 
Langevin noise works efficiently for high Nb com-
positions, which accelerate the precipitation kinet-
ics. At low Nb contents, the amplitude of the noise 
components for the two phases has to be increased 
significantly before a critical nucleus of either phase 
can be initiated. In other words, the system needs to 
be perturbed to a highly non-equilibrium state before 
it starts to decay, the non-critical noise components 
die down, and the supercritical noise components 
form the required nuclei. This results in an undesired 
transition period at the start of the phase-field simula-
tion (which starts at the end of the noise step). Because 
the microstructures in this transition regime are non-
physical, they should not be used in the training of the 
process–microstructure evolution surrogate models. 
Identifying and removing these transition segments 
from the phase-field simulation datasets poses a signif-
icant challenge. In this work, a critical maximum value 
of the order parameter introduced by noise was used 
as the cut-off limit for the noise. After the noise was 
cut off, the value decayed to a minimum during the 

transition regime when the critical nuclei were form-
ing, and rose again when the critical nuclei started to 
grow. However, there was no guarantee that all the 
noise terms had completely died down when the mini-
mum was reached, because residual non-equilibrium 
conditions in the system could not be completely ruled 
out.

Materials knowledge systems (MKS)

The MKS framework [30, 64, 65] starts with a vox-
elized description of the microstructure, denoted by 
the array mk

s
 , where k indexes the potential distinct 

material local states (e.g., different thermodynamic 
phases) that might be encountered in any voxel of the 
microstructure, s indexes the voxels, and the value 
of mk

s
 reflects the volume fraction of the voxel s occu-

pied by the material local state k . In most practical 
applications, each voxel is only allowed to be occu-
pied by only one of the allowed material local states; 
such microstructures are referred as eigen microstruc-
tures [66]. In other words, the value of mk

s
 is one for 

the material state present in the voxel and zero for all 
other material local states.

The representation of the microstructure as the 
array mk

s
 lacks translational invariance, which is auto-

matically implied in the periodic boundary condi-
tions imposed in the phase-field simulations. For this 
and other reasons [13, 67], the MKS framework uti-
lizes auto and cross-correlations of mk

s
 (also referred 

as two-point spatial correlations) to define statistical 
measures of the microstructures [33, 68]. Mathemati-
cally, the two-point correlations, denoted as f kk′

t
 are 

expressed as [69, 70]

where t indexes the set of discrete vectors that are 
allowed to be placed in the voxelized microstructures, 
and |S| is the total number of voxels in the microstruc-
ture. When k and k′ represent the same local state, the 
spatial correlations are referred as autocorrelations, 
and as cross-correlations otherwise. For the present 
case study with three phases, Eq. (10) defines a total 
of three autocorrelations and six cross-correlations. 
However, there exists a number of interdependen-
cies between these correlations [71]. In prior work 
with three material local states [33], it was observed 
that it is adequate to utilize two autocorrelations and 

(10)f
kk

�

t
=

1

�S�
S∑
s

m
k

s
m

k
�

s+t
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one cross-correlation for building surrogate models. 
Equation (10) is implemented [72] utilizing the compu-
tationally efficient fast Fourier transform (FFT) algo-
rithm. For each microstructure, the three correlations 
are flattened and appended into a single row, such that 
each row represents a complete set of microstructure 
statistics.

The spatial correlations computed using Eq. (10) 
result in a very large set of statistical features for each 
microstructure. As an example, for a microstructure 
defined using  1003 voxels, the set of three spatial corre-
lations mentioned above would produce about 3(10)6 
statistical features. Clearly, this unwieldy representa-
tion cannot serve the desired surrogate model building 
efforts. In the MKS framework, we seek a low-dimen-
sional representation of this large feature vector using 
PCA [73]. This step involves a rotational (distance-pre-
serving) transformation of the original features into 
a new frame, whose axes are organized to maximize 
the capture of variance in the ensemble of microstruc-
tures in the least number of orthogonal directions. In 
other words, the first PC direction explains the largest 
component of the variance in the original dataset, the 
second PC direction explains the second largest com-
ponent of the variance in the original dataset, and so 
on. The transformed features are referred as PC scores. 
It is important to scale the different sets of correla-
tions (in the present case we are using three sets of 
correlations) before performing the PCA to ensure that 
each set of correlations are equally represented in the 
resulting PC scores. The details of the scaling protocols 
have been described in prior work [36].

Gaussian process autoregression (GPAR)

The MKS framework described above can be com-
bined with a SV-MOGPAR to produce surrogate mod-
els of microstructure evolution. Let �t denote the vec-
tor of PC scores representing the spatial correlations 
of an evolving microstructure at a time step indexed 
by t . In the MKS framework [34], the desired surrogate 
model can be expressed as

where x is the input feature vector, �(⋅) the mean func-
tion, and k the covariance kernel. Frequently, the mean 
function is taken to be zero without a loss of generality 
(i.e. �(x) = 0 ). An assumption of Gaussian noise is then 
applied to observed outputs as y = � (x) + � (i.e. 

(11)�
t
∼ GP

(
�(x), k

(
x, x

�
))

� ∼ N
(
0, �

2

y
I

)
 ). More specifically, the input feature 

vector x contains the microstructure PC scores at T 
previous time steps (called autoregression order) 
defined on a uniformly discretized time axis. Prior 
work [34, 37] has shown that autoregression order of 
one is adequate for systems governed by first-order 
time derivatives. Therefore, it was decided to explore 
only first-order autoregression in this study, where it 
is assumed that the microstructure PC scores at any 
specified instant of time are dependent on the values 
of the microstructure PC scores at only one previous 
time step. Therefore, for the present study, the feature 
vector x simply contains the PC scores at the previous 
time step.

For this work, a Matern 3/2 kernel with automatic 
relevance determination (ARD) was used [74]. This 
kernel is expressed as

where length scales associated with each input dimen-
sion are grouped into Δ = diag

(
l
−1

1
, l
−1

2
,… , l

−1

N

)
 . The 

process resulting from this covariance kernel is one 
mean-squared differentiable, providing sharper transi-
tions in comparison with the squared exponential 
kernel.

Simultaneous predictions could be made for all 
values of PC scores considered, through the linear 
model of co-regionalization (LMC) [75, 76]. This 
model represents an extension of the standard 
Gaussian process to learn a multi-output function 
� (x) ∶ X → ℝ

P where the input space is X ∈ ℝ
D . The p

-th output of � (x) is expressed as f
p
(x) , with its com-

plete representation given as � =
{
f
p
(x

i
)

}
n

i=1

 . This is 
accomplished through constructing a multi-output 
function from a linear transformation W ∈ ℝ

P×L of L 
independent functions g(x) =

{
g
l
(x)

}
L

l=1
 . Each func-

tion is constructed as an independent GP   , 
g
l
(x) ∼ GP

(
0, k

l

(
x, x

′
))

 , each with its own covariance 
kernel, resulting in the final expression � (x) = Wg(x) . 
The multi-output covariance kernel described by this 
model is then:

This covariance kernel enables improved perfor-
mance through encoding correlations between output 

(12)
k
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dimensions and through the linear super positioning 
of multiple latent GP s. As a result, this kernel provides 
for an incredibly expressive model.

Detrimentally, the LMC model greatly expands the 
dimensionality of the covariance matrix K�� associated 
with the trained description of the infinite-dimen-
sional stochastic process f  . This often results in a pro-

hibitive cost of computing 
[
K�� + �

2

y
I

]
−1

 for even data-
sets of modest size; this computation needs to be 
repeatedly performed in optimizing the hyperparam-
eters of Eqs. (12) and (13) through the log marginal 
likelihood [74]. In order to enable computationally 
feasible inference, this work relies upon the variational 
free energy (VFE) approximation [77]. This sparse 
global approximation to the exact Gaussian process 
relies upon a collection of M inducing inputs 
Z =

{
z
m

}
M

m=1
 independent of X =

{
x
m

}
N

n=1
 , where 

M ≤ N provides a low-rank approximation to the full 
covariance K��  . The positions of these inducing points 
are then optimized collectively with the model hyper-
parameters through maximization of the evidence 
lower bound (ELBO), reflecting a minimization of the 
Kullback–Leibler (KL) divergence between the varia-
tional GP and the exact posterior GP  . Variational infer-
ence can then be performed through the expression

where K̂�� = Q
��
+ �

2

y
I , and Q��

= K��K
−1

��
K�� provides 

the low-rank approximation, with u representing the 
corresponding function values at the inducing points. 
Elements of the covariance matrices are calculated as [
K��

]
mm�

= k(z
m
, z

m�
) and

[
K��

]
nm�

= k(x
m
, z

m�
)   .  The 

resulting complete set of hyperparameters optimized 
within Eq. (14) is then =

{
W

1
,… ,W

L
, l,Z

}
.

Results and discussion

Generation of the simulation dataset

A total of 14 MEUMAPPS simulations were performed 
corresponding to a range of Nb compositions from 
0.095 to 0.16 in increments of 0.005. For each Nb com-
position, the Mo composition was assigned a constant 
value of 0.06, with Ni making up the balance. The Nb 
concentrations used in the simulations were selected 
to reflect those expected at the interdendritic regions 

(14)

L = −
N

2

log (2𝜋) −
1

2
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|||K̂��

||| −
1

2

y
⊤
K̂
−1

��
y −

1

2𝜎
2

y

trace

(
K�� −Q

��

)

during solidification at thermal conditions character-
istic of powder bed-based additive manufacturing 
(AM) processes [78]. Post-AM heat treatment of the 
alloy at 870 °C shows co-precipitation of the � and � ′′ 
phases [43], and the preferential formation of the � ′′ 
phase at the expense of the � phase as Nb concentra-
tion is increased. The values of the other input and 
computational parameters used in these simulations 
are summarized in Table 1 and are largely taken from 
prior work. These include the interfacial energy and 
transformation strains for the � ′′ [79] and the transfor-
mation strains for the � phase [47]. The latter assumes 
that the precipitate is fully coherent with the matrix. 
However, the use of these values along with the pub-
lished elastic constants for � does not result in the 
observed platelike morphology [45]. It is also known 
that the broad face of the � phase contains many inter-
facial dislocations [46] suggesting loss of coherency. 
Another unknown in the simulations is the potential 
variation of the transformation strains with the Nb 
content in the matrix. Due to the lack of the required 
data in published literature, a near-incoherent inter-
face was assumed along the broad face of the � while 
some coherency was assumed along the thickness of 
the plate to capture the observed plate morphology 
for the � phase.

Prior to performing the phase-field simula-
tions using the nucleation model described in 

Table 1  Summary of the input and computational parameters 
employed in the phase-field simulations performed for this work

Phase-field parameter Value(s)

Domain size, voxels 1263

Voxel resolution 1  nm3

Time step resolution(s) 0.005
Concentration, Mo 0.06
Concentration, Nb 0.095–0.16
Interfacial energy, � ′′ , (100) 0.12
Interfacial energy, � ′′ , (010) 0.12
Interfacial energy, � ′′ , (001) 0.12
Interfacial energy, δ, (100) 0.10
Interfacial energy, δ, (100) 0.10
Interfacial energy, δ, (100) 0.10
Transformation strain, � ′′ , (100) 0.0286
Transformation strain, � ′′ , (010) 0.0067
Transformation strain, � ′′ , (001) 0.0067
Transformation strain, δ, (100) 1.00E−07
Transformation strain, δ, (010) 0.0600
Transformation strain, δ, (001) 1.00E−07
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Sect. “Nucleation model,” single precipitate simula-
tions were performed for the � ′′ and � phases as shown 
in Fig. 1. As expected from the transformation strains 
and the interfacial energies used in the input parame-
ters,  � ′′ precipitates grew stably on {100} habit planes, 
while � precipitates grew stably on {111} habit planes. 
The size of the simulation domains used in these sim-
ulations was such that the disc shaped morphology 
was not fully developed for the � ′′ phase, although 
it is clear that the shape is evolving towards a disc 
parallel to the xz plane for the specific variant shown. 
However, for the multiple precipitate simulations the 
domain was not big enough to fully resolve the mor-
phologies of the individual precipitates especially at 
high Nb contents where significant coalescence of the 
variants occurred during the simulation.

Each phase-field simulation was performed until 
the microstructure was observed to have very little 
change with time: the final time was determined by 
observing the total free energy curve for each simu-
lation and selecting a point at which the curve dis-
played asymptotic behaviour. For each MEUMAPPS 
simulation, model data was collected starting from 
the time step after which microstructure evolution 
was largely controlled by the physics-based evolu-
tion laws described by the phase-field model and not 
by the non-physical evolution of the Langevin noise. 
After the noise was cut off, the maximum value of � 

introduced by the Langevin noise reached a minimum 
before it started to rise again as the supercritical nuclei 
started to grow. The training data was collected from 
the time step that marked the beginning of the rise in 
� to the final time step. Furthermore, microstructures 
were sampled every 15 time steps (i.e. every 0.075 s 
in simulation time) from the phase-field simulations 
for training the surrogate model. In other words, the 
time step for the autoregressive surrogate model cor-
responded to 15 time steps in the phase-field simula-
tion. This coarser time step for the surrogate model 
was selected to limit the overall computational cost of 
training the surrogate model, while ensuring sufficient 
resolution for capturing the microstructure evolution 
path for all compositions considered in this study. The 
protocols described above produced a total of 3,654 
microstructures for this work.

Microstructure quantification using MKS 
approaches

Phase-field simulations employ diffuse interfaces to 
carry out the computations described in Sects. “Phase-
field simulations”–“Nucleation model.” Since the pre-
cipitates are also in the nanoscale, the cross-sectional 
dimensions of the � and � ′′ are often comparable to 
the width of their diffuse interfaces with the matrix. 
The computations of the predicted volume fractions 

Figure 1  Results from single precipitate simulations. (Top) � ′′ precipitate forming on (100) plane. (Bottom) � precipitate forming on 
(111) plane.
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of the precipitates are significantly influenced by the 
choice of the threshold value of � (generally referred 
as segmentation threshold value). In this work, based 
on an evaluation of precipitate morphologies and 
the final volume fractions obtained at the end of the 
phase-field simulations, it was decided to transform 
the phase-field simulated microstructures to eigen 
microstructures by applying a threshold value of 0.5. 
In other words, the microstructure states for the � ′′ and 
� phases were defined as:

where �
p,s

 is the value of the order parameter for the 
precipitate variant p at voxel s . Note that these equa-
tions ensure that only one of the three material local 
states (i.e. gamma, delta, or matrix) are allowed in each 
voxel. The MKS framework described in Sect. “Mate-
rials knowledge systems (MKS)” was employed to 
quantify all the simulated microstructures produced 

(15)m
�
��

s
=

{
1, �

p,s
≥ 0.5∀1 ≤ p ≤ 3

0, otherwise

(16)m
�

s
=

{
1, �

p,s
≥ 0.5∀4 ≤ p ≤ 15

0, otherwise

for the present case study. Specifically, three sets 
of spatial correlations were computed: the � ′′ auto-
correlations, the �  autocorrelations, and the � ′′—� 
cross-correlations.

Following the established protocols of the MKS 
framework, PCA was performed on the computed set 
of spatial correlations. Consistent with prior applica-
tions [30, 32, 33], it was observed that only the first few 
PC scores are adequate to capture an overwhelming 
fraction of the overall variance in the collected set of 
microstructures. Specifically, in the present case, it was 
observed that the first three PC scores accounted for 
more than 99% of the explained variance. The basis 
maps for these scores are presented in Fig. 2.

As noted in prior work [34], the PC bases pose sig-
nificant challenges in interpretation, because of their 
extreme dimensionality. In the present case, each PC 
basis represents 3 sets of weighted spatial correlations. 
Qualitatively, it is seen the first PC score captures the 
competing volume fractions between � ′′ and � , indi-
cated by the fact that the highest magnitude points 
are located in the centre. Thus, as PC1 increases, the 
� volume fraction increases while the � ′′ volume frac-
tion decreases. PC2 is also strongly correlated with 

Figure 2  Basis maps for the first 3 PCs computed for the training set aggregated for the present study, shown on three orthogonal sec-
tions through the origin.
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the � phase volume fraction, although it may also be 
observed that it is correlated with the size of � ′′ pre-
cipitates (indicated by bright bands near but not at 
the origin).

Since each microstructure is represented as a 
point in the PC space, the complete details of the 
microstructure evolution in a phase-field simula-
tion can be represented as a trajectory in the PC 
space. Indeed, one of the main benefits of employ-
ing the MKS framework is that it allows a simple 
visualization of the extremely high-dimensional 
information of microstructure evolution in very few 
dimensions. Figure 3 shows the details of the micro-
structure evolution for each of the 14 MEUMAPPS 
simulations projected in the first two PCs. (These two 
PCs account for 95.7% of the explained variance in 
the entire ensemble of 3654 phase-field simulated 

microstructures produced for this study.) For all the 
trajectories shown, the initial microstructures are 
quite similar to each other and are found at approxi-
mate values of 60 for PC1 and -150 for PC2.

The microstructure evolution trajectories pre-
sented in Fig. 3 are smooth and show a systematic 
trend as the Nb composition is increased. For the 
low Nb compositions, the trajectories are found to 
be essentially linear segments (e.g. see the trajectory 
labelled by points A, B, and C, for  CNb = 0.105; the 
corresponding microstructures are shown in Fig. 4). 
These trajectories represent the microstructure evo-
lutions dominated by the formation of � precipitates, 
with the longer segments representing the produc-
tion of higher � volume fractions. For the high Nb 
compositions, the microstructure trajectories are 
seen to be slightly nonlinear, but their direction is 

Figure  3  PC1-PC2 projections of MEUMAPPS simulated 
microstructure evolutions for 14 different compositions. Each 
point in each figure represents one microstructure. Specific 

microstructures in these plots are labelled, and their spatial cor-
relations are presented in Figs. 2 and 3.
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distinctly different from the trajectories correspond-
ing to the low Nb compositions (e.g. see the trajec-
tory labelled by points G, H, and I, for  CNb = 0.15 and 
compare it with the ABC trajectory; the correspond-
ing microstructures are shown in Fig. 4). These tra-
jectories represent microstructure evolutions domi-
nated by the formation of � ′′ precipitates, with the 
longer segments once again reflecting the production 
of higher � ′′ volume fractions. For the intermediate 
Nb composition, the trajectories smoothly transi-
tion between the two types of distinct trajectories 
described above (compare the trajectory DEF with 
the other trajectories described above; the corre-
sponding microstructures are shown in Fig. 4). This 
is because the microstructure evolution in these 
intermediate Nb compositions appears to be initially 
dominated by the formation of � , followed by dis-
solution of � , and eventual formation of � ′′ . The fact 

that PCA captured all of these details in very simple 
visualizations is quite impressive, especially since 
PCA is completely unsupervised. In other words, 
none of the microstructures in the collected ensemble 
were labelled in any manner before the application 
of PCA.

Figure 4 shows that the phase-field simulations 
are able to capture the nucleation and growth of the � 
phase giving rise to the characteristic plate like mor-
phology. However, the shape of the � ′′ phase devi-
ates significantly from the expected disc morphology 
on (100) planes, especially at high Nb concentrations. 
This is mainly due to the high density of nucleation 
and significant coalescence of the three crystallo-
graphic variants of � ′′ . However, the simulations do 
capture the preferential growth of � ′′ at the expense 
of  � at intermediate (0.115 Nb) and high (0.15 Nb) 
concentrations.

Figure 4  Phase-field simulated microstructures corresponding to 
the ones labelled in Fig. 1. The three rows in the figure depict the 
microstructure evolution for three different Nb compositions. � ′′ 

precipitates are shown in red, while � precipitates are shown in 
blue. The evolution paths for these three different Nb composi-
tions are clearly distinct from each other.
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Figure 5 presents the computed spatial correla-
tions for three example microstructures (one in each 
row). The peaks at the origin in the autocorrela-
tions depict the respective phase volume fractions. 
Therefore, it can be seen that microstructure C is 
composed only of � , while microstructure E shows 
a high volume fraction of � combined with a low 
volume fraction of � ′′ . Conversely, microstructure 
F shows a high volume fraction of � ′′ and a low vol-
ume fraction of �  . The cross-correlations provide 
information on the relative placement of the two 
phases in the microstructures. The spatial correla-
tions shown in the figure also carry significant addi-
tional information about precipitate size, orienta-
tion, and morphology distributions. For example, 
although microstructures C and E exhibit similar 
volume fractions of � phase, the precipitate size is 

noticeably larger for microstructure C compared 
to microstructure E, which is reflected through the 
much broader central peak in the autocorrelation 
maps.

SV‑MOGPAR model building

In contrast to prior applications of the MKS-GPAR 
framework, the evolution of the low-dimensional 
microstructure measures (i.e. PC scores) exhibited 
significant coupling. In other words, the evolution 
of a PC score at any given time step was found to 
be significantly influenced by the values of other 
PC scores at the previous time step. In this work, 
the SV-MOGPAR model systematically accounts for 
this interdependence through the off-diagonal com-
ponents of the autoregressive covariance matrix, 

Figure 5  Computed spatial correlations for microstructures C, E, and F. Only the three mid-planes passing through the origin are shown 
in these plots for clarity.
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naturally accounting for correlations between the 
PC scores considered.

This model was constructed with the time evolution 
of standardized1 PC scores for the entire ensemble, 
which were then broken into train and test partitions 
with an 80/20 split. The number of latent GP s ( L ) con-
sidered in the LMC model was 6, with 116 summariz-
ing inducing points ( Z ). Training was performed over 
4000 epochs with the Adam optimizer [80] alongside 
cosine annealing of the initial 1e−2 learning rate in 
order to maximize the expression in Eq. (14). Once 
trained, the SV-MOGPAR model was then capable of 
providing autoregressive time series predictions for 
the evolution of the PC scores considered (taken to be 
equal to 15 time steps of the phase-field simulation). 
The performance of the model can be seen in the par-
ity plots of Fig. 6 for the first three target PC scores, 
with error metrics summarized in Table 2. The valida-
tion performance of the model ensures high numeri-
cal stability, since the predictive accuracy varies little 
with the input parameter values (i.e. PC scores) or 
the MEUMAPPS simulation (i.e. the Nb composition 
value).

SV‑MOGPAR predictions of microstructure 
evolution

Equipped with the trained SV-MOGPAR model, pre-
dictions were performed for each of the MEUMAPPS 
simulations (i.e. the compositions used to train the 

model). The initial set of PC scores for each simulation 
was taken as an input to the surrogate model, which 
subsequently was capable of producing predictions for 
the complete evolution pathways in PC space. Figure 7 
summarizes the SV-MOGPAR surrogate model perfor-
mance across the range of Nb concentrations, where 
it is apparent that the model is capable of producing 
accurate predictions across varied Nb concentration 
levels. The highest errors were observed in the simula-
tions where there was a transition from the microstruc-
tures dominated by � to those dominated by � ′′ . Since 
this transition occurs over a very narrow range of Nb 
compositions (from 11 to 12% Nb), there are very few 
of these microstructures in the training set used in this 
study. It is therefore quite reasonable that the highest 
errors in the surrogate model were observed for these 
transition microstructures. Even in these cases, it is 
seen that the final values of the PC scores were well 
reflected by the surrogate model predictions.

Figure 6  SV-MOGPAR model fits for (left) PC1, (middle) PC2 and (right) PC3. Blue points indicate training points, while red points 
indicate test points.

Table 2  Mean absolute error (MAE) and normalized mean abso-
lute error (NMAE) of the SV-MOGPAR model fitting errors for 
the present work

MAE NMAE (%)

Train Test Train Test

PC1 7.61E−04 7.30E−04 0.100 0.098
PC2 1.05E−03 9.26E−04 0.139 0.125
PC3 7.88E−04 8.36E−04 0.098 0.104

1 Features were standardized by subtracting their mean values and 
dividing by their standard deviations.
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Reconstructions of microstructure statistics

Once the microstructure evolution paths had been 
predicted, it was possible to reconstruct the truncated 
two-point correlations (i.e. reconstructions obtained 
from 3 PC scores and basis vectors). The reconstruc-
tions are obtained by performing matrix multiplica-
tion of the PC scores and basis vectors; this procedure 
has been covered in previous work [32]. Reconstruc-
tions of the two-point correlations for both were com-
puted for all 14 MEUMAPPS simulations at the final 
recorded time step. The reconstructions were com-
puted for both target PC values as well as PC values 
predicted by the SV-MOGPAR model. Mean absolute 
error (MAE) was computed between the SV-MOGPAR 

statistics and the original statistics for each of the 14 
final time steps, with these results being presented in 
Table 3.

Additionally, volume fraction errors may be com-
puted since volume fraction information is contained 
within the autocorrelations. Volume fraction values 
were extracted from the SV-MOGPAR-predicted cor-
relations by selecting the origin values of the recon-
structed autocorrelations and comparing them to the 
original volume fraction values. Since reconstructed 
microstructure statistics can be obtained from PC 
scores via simple matrix multiplication, going from a 
set of PC scores to volume fraction values may be con-
sidered to be a unique mapping. Additionally, since 
�
′′ and �  are stoichiometric compounds, the average 

composition of the matrix can be predicted directly 
from mass balance once the � ′′ and � volume fractions 
are known.

Figure  7  Time evolution of PC1-3 scores predicted by the 
phase-field simulations and the SV-MOGPAR model for a range 
of Nb compositions. The phase-field results are shown as solid 
black lines, while the corresponding SV-MOGPAR predictions 

are shown as dashed lines coloured by initial Nb concentration. 
The top row displays time evolutions for Nb compositions from 
0.095 to 0.125, while the bottom row displays time evolutions for 
Nb compositions from 0.13 to 0.16.

Table 3  Mean absolute error (MAE) mean and standard devia-
tion for reconstructions of SV-MOGPAR-predicted correlations 
compared to original correlations

�
′′–� ′′ δ–δ �

′′–δ

Mean 0.00383 0.01354 0.00927
Standard devia-

tion
0.00204 0.00029 0.00009

Table 4  Mean absolute error 
(MAE) mean and standard 
deviation for SV-MOGPAR-
predicted � and � ′′ volume 
fractions compared to original 
� and � ′′ volume fractions

�
′′ δ

Mean 0.064 0.097
Standard 

deviation
0.039 0.018
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Figure 8  Best-case scenario of reconstructed two-point correlations compared to original two-point correlations. These results were 
obtained at the final simulation time step for a Nb composition of 0.15.

Figure 9  Worst-case scenario of reconstructed two-point correlations compared to original two-point correlations. These results were 
obtained at the final simulation time step for a Nb composition of 0.12.

4878



J Mater Sci (2024) 59:4863–4881 

MAE was computed for both � and � ′′ volume frac-
tions at each of the final 14 simulation time steps, with 
the results being presented in Table 4.

By examining the MAE performance for each of 
the 14 simulations, high- and low-error cases may be 
identified. Figures 8 and 9 show examples of best- and 
worst-case scenarios, respectively, for reconstructed 
correlations in this work.

For both the best- and worst-case scenarios, the 
majority of the error is derived from the truncation 
to 3 PC scores and basis vectors. Therefore, perfor-
mance may potentially be improved by extending the 
SV-MOGPAR to a larger number of PC scores. Though 
it was outside the scope of this work, there has been 
promising work in recovering original microstructure 
information from microstructure statistics via multi-
output Gaussian random fields [70]. Future work 
could involve applying this approach to the recon-
structed microstructure statistics to obtain predictions 
of the thresholded phase-fields.

Conclusions

A surrogate model using the toolkits in the materials 
knowledge system consisting of two-point correla-
tions, principal component analysis and SV-MOGPAR 
was developed by using training data generated by 
phase-field simulations to capture the microstructural 
evolution paths during annealing of Ni–Mo–Nb alloys 
with varying levels of Nb that are likely to be present 
in the microsegregated regions of the solidification 
microstructures produced during powder bed-based 
AM processes. The model was shown to capture rea-
sonably well the highly complex microstructure evo-
lution paths during annealing that is characterized by 
a bifurcation from the � phase dominated structure at 
low Nb contents to a � ′′ structure at high Nb contents. 
The Langevin noise-based nucleation model used in 
the phase-field simulation posed significant issues 
due to the uncertainty involved in separating the arti-
ficially introduced noise from the physics-based evolu-
tion of the supercritical nuclei and their growth.

Importantly, this work provides several notable 
extensions on prior efforts in modelling the evolv-
ing spatial correlations of heterogeneous microstruc-
tures. Most notably, the microstructure evolution 
pathways demonstrated coupled evolution of their 

low-dimensional PC representation that provided 
accurate predictions across PC scores. The use of a 
multi-output Gaussian process, incorporating such 
interdependencies facilitated the production of accu-
rate trajectory predictions. These interdependencies 
between low-dimensional microstructure features 
are a natural consequence of considering multiple 
precipitate phases and variants, and adjoining their 
corresponding two-point correlations prior to per-
forming PCA. This work establishes a foundational 
framework for future efforts aimed at the modelling of 
high-dimensional microstructure evolution pathways 
in complex material systems.
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