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Abstract

Forecasting stochastic nonlinear dynamical systems under the influence of
conditioning variables is a fundamental challenge repeatedly encountered across
the biological and physical sciences. While flow-based models can impressively
predict the temporal evolution of probability distributions representing possible
outcomes of a specific process, existing frameworks cannot satisfactorily account
for the impact of conditioning variables on these dynamics. Amongst several
limitations, existing methods require training data with paired conditions and
are developed for discrete conditioning variables. We propose Conditional
Variable Flow Matching (CVFM), a framework for learning flows transforming
conditional distributions with amortization across continuous conditioning
variables – permitting predictions across the conditional density manifold. This is
accomplished through several novel advances. In particular, simultaneous sample
conditioned flows over the main and conditioning variables. In addition, motivated
by theoretical analysis, a conditional Wasserstein distance combined with a loss
reweighting kernel facilitating conditional optimal transport. Collectively, these
advances allow for learning system dynamics provided measurement data whose
states and conditioning variables are not in correspondence. We demonstrate
CVFM on a suite of increasingly challenging problems, including discrete
and continuous conditional mapping benchmarks, image-to-image domain
transfer, and modeling the temporal evolution of materials internal structure
during manufacturing processes. We observe that CVFM results in improved
performance and convergence characteristics over alternative conditional variants.

1 Introduction

Appropriately modeling the time-dependent evolution of distributions is a central goal in multiple
scientific fields, such as single-cell genomics (Tong et al., 2023a; Bunne et al., 2023a), meteorology
(Fisher et al., 2009), robotics (Ruiz-Balet & Zuazua, 2023; Chen et al., 2021), and materials
science (Kalidindi, 2015; Adams et al., 2013). In each of these fields, forecasting stochastic
nonlinear dynamical systems requires a methodology for learning the transformations of time-
evolving densities given unpaired observational samples, or observations across time which are
not in correspondence. This requirement arises due to practical constraints on data collection in
these scientific applications. For example, in both single-cell genomics and materials science,
experimental testing to quantify the system’s state is often destructive, precluding measurement of
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the state across multiple time steps (Tong et al., 2023a; Bunne et al., 2023a; Ghanavati & Naffakh-
Moosavy, 2021; ASTM International, 2024).

Various approaches to address this challenge have recently been proposed, including diffusion
Schrödinger bridges (DSB) (Liu et al., 2022a; Chen et al., 2023; De Bortoli et al., 2021; Bunne
et al., 2023a; Tang et al., 2024) alongside extensions of Flow Matching (FM) (Tong et al., 2023b,a).
These approaches generalize denoising diffusion probabilistic models (Ho et al., 2020), score
matching (Song et al., 2021), and FM (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu
et al., 2022b), to arbitrary source distributions – a necessary relaxation to model the evolutionary
pathways of physical or biological systems, as such natural systems rarely exhibit Gaussian source
distributions1.

Despite the apparent success of such approaches, their practical utility has been limited, solely
permitting the simulation of evolving unconditional distributions. In modeling the dynamics of
real systems, the most paramount questions are often variants of, how might an intervention affect
the resulting dynamics? Addressing such questions requires the ability to uncover the behavior
of conditional stochastic dynamical systems, despite our limited capacity to inspect their time-
dependent states. In addition to unpaired state measurements, we often must also contend with
unpaired conditioning. Apart from the destructive nature of common data collection in the sciences,
unpaired conditioning commonly arises due to the prohibitive costs sample acquisition. Design-
of-experiments or active learning approaches are frequently employed to mitigate these costs
by minimizing the number of experiments – identifying a series of maximally informative test
configurations (Lookman et al., 2019; Tran et al., 2020). Although, this diversity ensures that
conditioning is purposefully rarely repeated.

Extensions modeling the dynamics of conditional distributions are still in their infancy (Ho &
Salimans, 2022; Zheng et al., 2023; Bunne et al., 2022; Harsanyi et al., 2024; Bunne et al., 2023b;
Isobe et al., 2024). Conditional input convex neural networks (ICNN) (Bunne et al., 2022; Harsanyi
et al., 2024; Bunne et al., 2023b) and conditional extensions of flow matching (Isobe et al., 2024;
Zheng et al., 2023; Dao et al., 2023), in particular, require datasets with matching conditioning,
or the ability to first be able to select y ∈ Y and subsequently sample xt ∼ pt(x|y). This
structure degrades in the limit of continuous conditioning variables, where obtaining multimarginal
samples with equivalent conditioning is infeasible; a setting frequently encountered in engineering
applications, such as in the monitoring and modeling of manufacturing processes. In this application
of stochastic dynamics in materials science, the resulting material structure depends upon process
parameters such as applied temperature or power (Liu et al., 2022c; Schrader & Elshennawy, 2000).
Select recent works have explored extensions to enable this continuous conditioning treatment by
introducing approximate conditional Wasserstein distances which more severely penalize transport
across the conditioning variable (Chemseddine et al., 2024; Kerrigan et al., 2024). Detrimentally,
we demonstrate in our work that this approximation in isolation is both insufficient to adequately
capture conditional dynamics of for complex mappings and is practically challenging to calibrate
due to highly sensitive, problem specific hyperparameter selection.

We propose Conditional Variable Flow Matching (CVFM), a general approach for learning
the flow between source and target conditional distributions. Importantly, CVFM supports
entirely unpaired datasets, wherein neither the sample data nor their corresponding conditioning
variables need to be paired. We motivate CVFM’s proposed training algorithm through a theoretical
analysis of the stability of flow matching on conditional densities. Here, we observe the need for
optimal transport over the conditioning variables. To realize this, core to CVFM is the usage of two
conditional flows, a conditional Wasserstein distance, and a condition dependent loss reweighting
kernel, generalizing existing simulation-free objectives for continuous normalizing flows (CNF)
(Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) and stochastic dynamics (Tong et al.,
2023a; Shi et al., 2023) to the conditional setting. We specifically focus on dynamics wherein
the marginal distribution over the conditioning variable remains constant – a common setting in
applied problems. The algorithm is introduced in the dynamical formulation of optimal transport
(OT), augmenting FM and ordinary differential equation (ODE) based transport in defining a
straightforward training objective for learning amortized conditional vector fields. Our objective
facilitates simulation across the conditional density manifold, leveraging a conditional Wasserstein

1We note that when approximating the dynamics of real systems, the model is trained to transform the state
density between successive time steps. Therefore, even if the density at t = 0 is Gaussian, the bridge between
arbitrary time steps must be generalized.
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Figure 1. (Left) Conditional time-dependent density evolution from 8-Gaussians to Moons through
the SDE and ODE formulations of CVFM. (Right) Comparison of conditional flows learned using
just the proposed conditional kernel (red) and the proposed CVFM framework (blue). The kernel
effectively further facilitates disentanglement of the flow conditioning during static conditional OT.

distance and kernel for enabling conditional OT. Subsequently, we analyze CVFM on several toy
problems, demonstrating its superior performance and convergence behavior compared to existing
methods. The performance of CVFM is further demonstrated in two more challenging case studies:
the dynamics of material microstructure evolution conditioned on various manufacturing processes,
and class conditional image-to-image mapping. As a part of these latter case studies, we further
demonstrate the applicability of our method to approximating conditional Shrödinger bridges with
a score-based stochastic differential equation (SDE) extension to FM (Tong et al., 2023a).

2 Dynamic Mass Transport Methods

2.1 Flow Matching

Continuous Normalizing Flows (CNF) (Chen et al., 2018) define a mapping between distributions
p(x0) and p(x1) both on the same domain, x0, x1 ∈ RN via the following ordinary differential
equation (ODE).

d

dt
ϕt(x) = ut(ϕt(x)), ϕ0(x) = x (1)

This ODE defines a flow, ϕt(x) = ϕ(x, t), producing a push-forward operation for transforming an
initial distribution, p0(x), into an arbitrary time dependent distribution, pt(x), (i.e., ϕ# : [0, 1] ×
P(RN ) →;P(RN )), such that pt(x) is equal to p(x1) at t = 1 (Lipman et al., 2023; Albergo &
Vanden-Eijnden, 2023; Liu et al., 2022b). Individual samples x0 ∼ p(x0) can be transformed to
x1 ∼ p(x1) by integrating the vector field ut : [0, 1]× RN → RN and solving the ODE in Eq. (1).

Flow matching (FM) provides a simulation-free objective for constructing the marginal probability
path pt(x) via a marginalization of sample conditioned probability paths pt(x|z), conditioned on
observations z = (x0, x1) drawn from the empirical distributions q(x0) and q(x1).

pt(x) =

∫
pt(x|z)q(z)dz (2)

Lipman et al. (2023) demonstrates that one can similarly marginalize over conditional vector fields
ut(x|z), whose marginal ut(x) generates the probability flow pt(x) (Theorem 1 (Lipman et al.,
2023)). The consequences of which permit directly regressing upon the conditional vector field as

LCFM(θ) = Et,q(z),pt(x|z)||vθ(x, t)− ut(x|z)||2 (3)

where for conditional Gaussian paths pt(x|z) = N (x|µt(z), σ
2
t (z)) of ϕt,z(x) = µt(z) + σt(z)x

the unique conditional vector field ut(x|z) can be solved in closed form (Theorem 3 (Lipman et al.,
2023), Theorem 2.1, (Albergo & Vanden-Eijnden, 2023)).
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2.2 Optimal Transport

The optimal transport (OT) problem aims to identify a mapping between measures, ν and µ, with
minimal displacement cost (Villani, 2009). The Kantorovich relaxation attempts to recover the OT
coupling π given the potential set of all couplings on RN × RN , such that the coupling’s marginals
are the original distributions, Π(µ, ν) = {π ∈ P(X × Y) : PX#π = µ and PY#π = ν}. The
resulting distance W (µ, ν) is the Wasserstein distance

W (µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)π(x, y)dxdy (4)

where the 2-Wasserstein distance W (µ, ν)22 is induced by the ground cost c(x, y)2.

Entropically-Regularized OT: The optimization of the Wasserstein distance over couplings
Π(µ, ν) is a computationally challenging problem. The seminal work by Cuturi (2013) alleviates
these issues by introducing a regularization term using the Shannon entropy H(π), equivalently
described by the KL-divergence KL(π∥µ ⊗ ν) between a coupling, π and independent joint
distribution between µ and ν, µ⊗ ν (Khan & Zhang, 2022).

Wε(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)π(x, y)dxdy − εKL(π∥µ⊗ ν) (5)

As ε → 0 we recover the Kantorovich optimal transport plan, which we will distinguish as exact
optimal transport, while ε > 0 yields a differentiable approximation to Eq. (4) with respect to the
inputs.

OT-FM: While the Gaussian conditional probability paths for pt(x|z) in FM are the OT paths after
conditioning on z (Peyré & Cuturi, 2020), the induced marginal flow, defining pt(x), does not
provide OT between distributions. Recent works have demonstrated that dynamic marginal OT
can be achieved through identifying the static OT map (Tong et al., 2023b; Pooladian et al., 2023).
Practically, this is achieved by sampling z according to the distribution q(z) = π∗(x0, x1) , where π∗

denotes the OT coupling. In practical implementations, π∗ is identified within minibatches during
training. A core benefit of this approach is a pronounced reduction in variance of the regression
target in Eq. (3), enabling expedited model convergence.

2.3 Schrödinger Bridge

The Schrödinger bridge problem aims to identify the most likely stochastic mapping between
arbitrary marginal distributions P0 = µ0 and P1 = µ1 with respect to a given reference process
Q (Cuturi, 2013; Léonard, 2013; Schrödinger, 1932), defined as

P∗
t = argmin

P0=µ0,P1=µ1

KL(Pt∥Qt) =

∫
C[0,1]

log

(
dPt

dQt

)
dPt (6)

where C[0, 1] denotes continuous paths over RN over the time interval [0, 1] and dPt

dQt
the Raydon-

Nikodym derivative. Frequently, Q is taken to be Q = σW, where W is standard Brownian motion,
otherwise known as the diffusion Schrödinger bridge (De Bortoli et al., 2021; Chen et al., 2022;
Vargas, 2021; Bunne et al., 2023a; Shi et al., 2023).

Prior work has elucidated a rich relationship between the Schrödinger bridge problem and OT,
in particular entropy-regularized OT (Léonard, 2013; Mikami & Thieullen, 2006; Mikami, 2004;
Léonard, 2010). More specifically, with the reference process assumed as standard Brownian
motion, the marginals of the dynamic Schrödinger bridge can be considered to be a mixture of
Brownian bridges weighted by the static entropic OT map (Léonard, 2010, 2013)

pt(x) =

∫
pt(x|x0, x1)dπ

∗
ε (x0, x1). (7)
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In this reframing, the diffusion Schrödinger bridge can be approximated through a collection of
marginal Brownian bridges defined as pt(x|x0, x1) = N (x; (1 − t)x0 + tx1, σ

2t(1 − t)), with
diffusion coefficient σ; a construction reminiscent of Eq. (2).

2.4 Score and Flow Matching

Given the notable connection between the Shrödinger bridge problem (Schrödinger, 1932) and
entropy regularized optimal transport (Léonard, 2013; Mikami & Thieullen, 2006; Mikami, 2004;
Léonard, 2010), a natural step to address this challenge in a simulation-free manner is to seek an
extension to the OT-FM objective. Tong et al. (2023a) recently demonstrated the feasibility of just
this approach through generalizing Eq. (2) and Eq. (3) to simultaneously regress on the conditional
drift and score of an SDE. The proposed method replaces the flow ODE with the general Itô SDE:

dx = ut(x)dt+ g(t)dwt, x0 ∼ p0(x0) (8)

where ut(x) is the SDE drift, dwt is standard Brownian motion2, and g(t) is a handcrafted function
frequently taken to be constant (Tong et al., 2023a). The SDE drift and a corresponding ODE vector
field ût(x) are intimately related by the expression

ût(x) = ut(x)−
g(t)2

2
∇ log pt(x) (9)

denoted as the probability flow ODE of the process (Song et al., 2021), such that specification of the
probability flow and Stein score function are sufficient to describe the SDE (Tong et al., 2023a).

Mirroring the previous flow-based models, the vector field, ut(x), and the score function, st(x) =
∇ log pt(x), which define the SDE’s drift are unknown. Tong et al. (2023a) propose a generalization
of the FM objective, Eq. (3), for training approximators of both objects

L[SF]2M(θ) = LCFM(θ) + Et,q(z),p(x|z)λ(t)
2||sθ(x, t)−∇ log pt(x|z)||2 (10)

where λ(t)2 is selected to standardize the loss, such that values of∇ log pt(x|z) near t = 0 or t = 1
do not dominate, effectively stabilizing training (Tong et al., 2023a; Song et al., 2021; Ho et al.,
2020; Karras et al., 2022). Theorem 3.1 of their work demonstrates the feasibility of extending the
marginalization construction in Eq. (2) to the marginal score through matching of the conditional
score of Brownian bridge probability paths. Further background can be found in Appendix C.

In modeling the dynamics of real world systems, such score and flow matching models have
displayed improved performance over OT-FM and FM (Tong et al., 2023a), in part due to the
score function reducing movement to sparse regions of the data manifold. We emphasize that the
conceptual similarity between the derivation of the flow matching objective and the generalized score
and flow matching objective signifies that any improvements in the first can be readily transferred
to the second without significant modification. As a result, in this work we theoretically restrict
ourselves to purely flow-based models to simplify communication of novel developments. However,
in later case studies we utilize score and flow-based models.

3 Conditional Variable Flow Matching

In the following section, we generalize the FM objective in Eq. (3) to matching the flow between
arbitrary conditional distributions, p0(x|y) to p1(x|y), provided unpaired observations with distinct
conditioning variables. We call our proposed framework conditional variable flow matching
(CVFM).

3.1 Constructing Conditional Probability Paths and Vector Fields

We begin by first noting that the original marginalization motivating the flow matching objective in
Eq. (2) can be extended to construct a probability flow across both x and a conditioning variable y
as

2The Brownian motion differential is defined to be standard Gaussian noise times a time differential.

5



pt(x|y) =
∫

pt(x|y, z, w)q(z, w)dzdw (11)

where q(z, w) now denotes the empirical distribution over z = (x0, x1) and w = (y0, y1). We make
the further assumption that the conditional joint probability path decomposes as pt(x, y|z, w) =
pt(x|z)pt(y|w), resulting in two simultaneous conditional flows.

We can also extend this line of thought towards defining a marginal conditional vector field, through
marginalizing over vector fields conditioned on observations z and w as

ut(x|y) = Eq(z,w)
ut(x|z)pt(x|z)pt(y|w)

pt(x, y)
(12)

where ut(x|z) : RN → RN is a conditional vector field generating pt(x|z) from p0(x|z), without
any explicit dependence upon the conditional distribution over our conditional variable, y. Following
Theorem 3 (Lipman et al., 2023), Theorem 2.1, (Albergo & Vanden-Eijnden, 2023), and Theorem
3.1 (Tong et al., 2023a), we prescribe a form to both conditional vector fields such that they
generate their respective conditional probability distributions3. Somewhat paradoxically, this way of
combining conditional vector fields can be shown to generate the marginal conditional vector field,
ut(x|y), which is formalized in the following theorem.

Theorem 3.1 The marginal conditional vector field Eq. (12) generates the marginal conditional
probability path Eq. (11) from p0(x|y) given any samples of q(z, w) independent of x, y, and t if
q(z, w) follows the conditional optimal coupling π(y0, y1) over w, and q(y0) = q(y1).

This result deviates from prior results by Lipman et al. (2023) (Theorem 1) and Albergo et al.
(2023) (Theorem 2.6), showing that optimal transport over the conditioning variable is necessary
for learning amortized conditional vector fields Chemseddine et al. (2024). The full proof of all
theorems are provided in Appendix A.

3.2 Flow Matching for Conditional Distributions

Even provided Eq. (11) and Eq. (12), their incorporation in an overall objective for training a neural
network approximator to ut(x|y) is still limited by several intractable integrals. Instead, we can
obtain an unbiased estimator of the marginal conditional vector field and resulting probability path
provided only samples from known distributions and the ability to compute ut(x|z) through the
proposed conditional variable flow matching objective.

LCVFM(θ) = Et,q(z,w),pt(x|z)pt(y|w)

[
α(w)∥vθ(x, y, t)− ut(x|z)∥2

]
(13)

This is formalized in the following recognizable theorem.

Theorem 3.2 If pt(x|y) > 0 for all x ∈ RN and for all y ∈ RM and t ∈ [0, 1], then LMCFM(θ)
(r.h.s. below) and LCVFM(θ) are equal up to a constant, and hence:

∇θLCVFM(θ) = ∇θEt,pt(x,y)∥vθ(x, y, t)− ut(x|y)∥2 (14)

3.3 Stabilizing and Accelerating Training

Unlike previous flow matching frameworks, the empirical distribution, q(z, w), cannot be arbitrary
(Lipman et al., 2023; Tong et al., 2023a). Instead, the distribution must be selected so that movement
from q(y0) to q(y1) follows the coupling π(y0, y1). The theoretical reasons for this restriction are
described in Appendix A. Although the construction of q(z|w) is arbitrary, the conditional coupling

3For Gaussian probability paths with deterministic dynamics: ut(x|z) = x1 − x0 (Pooladian et al., 2023;
Tong et al., 2023b; Albergo & Vanden-Eijnden, 2023) and stochastic dynamic: ût(x|z) = ((1 − 2t)/(2t(1 −
t)))(x− (tx1 +(1− t)x0))+ (x1 − x0), ∇x log pt(x|z) = (tx1 +(1− t)x0 − x)/(σ2t(1− t)) (Tong et al.,
2023a).
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π(z|w) provides reduced objective variance and quicker convergence characteristics. Altogether, we
recommend two changes to stabilize training.

Conditional Optimal Transport: We modify the empirical distribution, q(z, w), through
identifying a static conditional OT map: q(z, w) = π(z, w) between the source and target
distributions. Necessarily, the identification of this map requires the introduction of a ground cost
with support over the space X × Y : RN × RM .

We would like to search for an OT map predominantly permitting movement across X and not Y .
In a very practical sense, given the continuous support of Y , such a constraint would not be feasible
within a finite number of samples. Instead, we moderate this requirement in a manner similar to
concurrent proposals by Kerrigan et al. (2024) and Chemseddine et al. (2024) in the form of the
proposed continuous non-negative cost function

c((xi, yi), (xj , yj)) = ∥xi − xj∥p + η∥yi − yj∥p (15)

where η > 0 is a parameter governing the tolerance of transport permissible in Y , and ∥x∥p the
p-norm .

Proposition 3.1 Let µ, ν ∈ P(RN × RM ) and let πη be an OT plan with associated value η from
the cost function Eq. (15). As η →∞, mass transport in y is eliminated (Carlier et al., 2008):

lim
η→∞

∫
RM

∥yi − yj∥pdπη = 0 (16)

Conditioning Mismatch: To further ensure that conditional OT is obtained within minibatches, we
include a scaling term through a stationary symmetric kernel α(w) in Eq. (13). The kernel dictates
the acceptance of conditional vector fields, dependent upon the degree of mismatch in the sampled
conditioning variable {y0, y1} – controlling the conditional probability flow permissible across y.
In settings with discrete conditioning, we let it approach a delta function, prohibiting movement
across classes, whereas with continuous conditioning and mild assumptions of continuity across y,
providing some degree of relaxation is particularly advantageous. In this work, we restrict ourselves
to the squared exponential kernel, α(w) = exp(−(y0− y1)/2σ

2
y) and the modulation of σy (Wilson

& Adams, 2013; Rasmussen & Williams, 2006). We will repeatedly see that this addition significant
improves model performance and training stability.

4 Experiments

We empirically evaluate the performance of the proposed CVFM framework on a suite of
increasingly demanding problems, investigating its performance in accurately recovering target
conditional densities. We first interrogate the performance of CVFM alongside conditional alternate
formulations on 2D toy datasets with discrete and continuous conditioning. Subsequently, we
turn towards domain transfer between MNIST and FashionMNIST, demonstrating high-dimensional
conditional OT. Lastly, we model the dynamics of materials’ microstructures undergoing spinodal
decomposition across varied processing conditions.

2D Experiments: We first evaluate the capabilities of various methods in approximating dynamic
conditional optimal transport and the Shrödinger bridge (SB) problem in a low-dimensional setting.
We compare our complete method, CVFM, against Conditional Generative Flow Matching (CGFM)
(Isobe et al., 2024; Zheng et al., 2023; Dao et al., 2023), Triangular Conditional Optimal Transport
(T-COT-FM) (Kerrigan et al., 2024), as well as two ablated CVFM variants. CGFM in particular
does not support unpaired conditioning, requiring the ability to sample from z ∼ {π(x0, x1|yi)}mi=0,
precluding its ability to address scientific questions as m → ∞. We simply present it as a useful
benchmark, representing a lower-bound on the discrete conditioning problems presented. The first
of the ablated variants considered removes both minibatch conditional optimal transport and α(w),
but retains the interpolated flow in y (see Appendix E). We refer to this variant as Conditional Flow
Matching (CFM) as it reduces to the original proposed CFM algorithm given paired conditioning
(Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023). The second variant solely excludes α(w)
– we refer to this as Conditional Optimal Transport Flow Matching (COT-FM). COT-FM is nearly

7



Table 1. Comparison of conditional neural optimal transport and Shrödinger bridge methods.
Reported metrics consist of the Wasserstein-2 error between the target distribution and simulated
distribution at t = 1, and the normalized path energy of the time-evolving distribution. Training
was repeated over 5 seeds, with values reported as µ ± σ. Best observed values with unpaired
conditioning are bolded with second best denoted by an asterisk within OT and SB methods.
Entropic OT couplings, Eq. (5) identified via the Sinkhorn algorithm are differentiated from default
Exact couplings, Eq. (4).

Wasserstein-2 Error (↓) Normalized Path Energy (↓)
8 Gaussian-8 Gaussian 8 Gaussian-Moons Moons-Moons 8 Gaussian-8 Gaussian 8 Gaussian-Moons Moons-Moons

CVFM 0.571±0.139 0.440±0.097 1.102±0.047 0.109±0.039* 0.043±0.049 0.125±0.003
COT-FM 1.997±0.528* 0.537±0.115* 1.353±0.022 0.177±0.081 0.075±0.031* 0.135±0.004*
CFM 4.013±1.026 1.768±0.448 2.227±0.264 0.403±1.688 0.148±0.287 0.410±0.061
T-COT-FM 2.296±0.060 0.564±0.031 1.318±0.041* 0.063±0.024 0.081±0.006 0.209±0.023

CVFM-Entropic 0.409±0.080 0.414±0.109 1.018±0.031 0.064±0.040 0.022±0.037 0.088±0.013
COT-FM-Entropic 2.566±0.624 0.720±0.176 1.080±0.016* 0.179±0.073 0.073±0.064 0.125±0.004
CVSFM 0.518±0.105* 0.428±0.114* 1.081±0.028 0.089±0.033* 0.041±0.056* 0.115±0.013
COT-SFM 1.936±0.423 0.539±0.133 1.267±0.043 0.159±0.085 0.064±0.049 0.110±0.013*

CGFM 0.491±0.095 0.352±0.085 – 0.024±0.038 0.019±0.054 –
CGFM-Entropic 0.483±0.075 0.376±0.083 – 0.037±0.066 0.019±0.065 –

equivalent to the concurrent work of Chemseddine et al. (2024); it differs by having varied noise
schedules for the conditional probability paths in x and y (see Fig. 4). ODE and SDE-based variants
for the SB problem are also evaluated for CVFM and COT-FM, utilizing the probability flow ODE
with entropic regularized OT, alongside the SDE extension to our objective, conditional variable
score and flow matching (CVSFM).

Three mappings are investigated and their associated results are displayed in Table 1. We report
the Wasserstein-2 error in the predicted distribution at t = 1 to the target distribution, alongside
the normalized path energy, defined as NPE(µ, ν) = |

∫
∥vθ(x, y, t)∥2dt − W 2

2 (µ, ν)|/W 2
2 (µ, ν),

computed through 10,000 samples. The CVFM method notably results in equivalent or more
optimal values of Wasserstein-2 error and normalized path energy across all mappings with unpaired
conditioning. CVFM even nearly matches CGFM’s performance on discrete problems, where
CGFM has knowledge of the correct conditional couplings a priori. Figure 2 contrasts samples
and pathways from a subset of these methods. Only CVFM is able to clearly recreate the final target
distributions. Notably, the CFM formulation, produces an appreciable nonzero vector field in the
conditioning space, precluding the validity of Eq. (12) (Appendix A), resulting in poor performance.
Noteably, the kernel appreciably improves performance; CVFM outperforms both T-COT-FM and
COT-FM.

Improved convergence: Beyond improved metrics, the CVFM implementation also displays
improved convergence characteristics, as evidenced by Figure 2. In all cases, the CVFM objective
converges faster and to a lower metric value than other methods and variants. Further interrogation
regarding the impact of η in the conditional ground cost and α(w) was also performed. In the
proposed methods incorporating the ground cost (CVFM, COT-FM, and T-COT-FM), increasing
η leads to improvement. However, it is often insufficient. For example, in the 8 Gaussian - 8
Gaussian example the addition of α(w) in CVFM facilitates a marked improvement. Additional
ablations are also presented in Appendix D.1 highlighting the important role of α(w) in reducing
the COT approximation inherent in Eq. (15) in greater depth.

MNIST-FashionMNIST Domain Transfer: We further evaluate our method in domain transfer
between MNIST digits and FashionMNIST clothing articles with conditioning by class. We directly
compare our two variants, CVSFM against COT-SFM, Figure 3. The FID and LPIPS scores reported
are averages across the class conditioned scores (i.e., FID and LPIPS are computed on a per-
class basis across 1,000 samples in each class). Select images from the source and corresponding
generated images from the target conditional distributions are also shown. As seen in the repeated
samples, the model is able to consistently map to the correct paired conditional distribution while
displaying appreciable diversity within each class. Similar to the 2D experiments, we observe
improved convergence and mode coverage with CVSFM across η values due to α(w) restricting
flow across y. For further analysis, see Appendix D.2.

Material Dynamics: We next investigate the performance of our proposed method in a scientific
application: the dynamics of time-evolving microstructures subject to various processing conditions.
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Figure 2. CVFM results in lower error in Wasserstein-2 distance to target distribution across batch
sizes and y-direction cost weighting η, compared to COT-FM (Eq. (15)) or the naïve conditional
implementation CFM. Trajectories are colored by conditioning variable.

Figure 3. CVSFM conditionally generated images from the FashionMNIST dataset. (Left) pane
displays samples from the initial distributions p0(x|y), while the middle displays generated samples
from p1(x|y). Relative positioning indicates paired samples. (Right) pane illustrates the improved
convergence of CVSFM over COT-SFM in high-dimensional domain transfer for η = 10 and η =
1000. Displayed FID/LPIPS scores are computed per class and averaged.

Low-dimensional representations of the 2-point statistics4 of phase-field simulations are taken as
descriptors of the internal state of the material’s microstructure, discussed in greater detail in
Appendix B. Importantly, the time-dependent observations modeled are the result of computational
simulations of spinodal decomposition, granting us complete access to paired conditioning-
trajectory information – information frequently unavailable in manufacturing settings. This
enables us to validate and quantify the model’s performance by computing error metrics on a per
trajectory basis. Table 2 reports the results for our proposed methodology, accepting unpaired
samples and conditioning variables in comparison with traditional approaches requiring complete
trajectory information. Despite having access to corrupted and misaligned versions of the available
observations, CVSFM-Exact results in comparable or better performance when compared to the
Neural ODE or LSTM models which require complete trajectories. We also compare our method
against T-COT-FM (Kerrigan et al., 2024), similarly capable of accepting corrupted conditional
measurements, alongside two SDE-based extensions, denoted T-COT-SFM. The first utilizes a fixed
value of σ, while in the second, we extend the work of Kerrigan et al. (2024) to set a distinct
conditional probability path across y, with its own σy as implemented in this work. Figure 4 displays
exemplar trajectories alongside distributions of expected error across time, further illustrating the
ability of the proposed method to learn complex conditional stochastic nonlinear dynamics.

4Compression is performed through Principal Component Analysis (PCA).
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Table 2. Comparison of conditional neural optimal transport methods alongside conventional
approaches on spinodal decomposition PC trajectories. Expected values of Et[pt(x|y)] are compared
against complete trajectory information not observed during training. Reported absolute error
metrics are reported as µ± σ alongside maximum and minimum absolute error.

Train Test

µ± σ Min. Max. µ± σ Min. Max.

Neural ODE (Chen et al., 2018) 0.261±0.119 0.105 1.499 0.264±0.129 0.116 1.400
LSTM (Hochreiter & Schmidhuber, 1997) 0.355±0.212 0.038 2.071 0.358±0.331 0.045 1.648

CVSFM 0.166±0.140 0.023 1.654 0.188±0.147 0.039 1.284
CVSFM-Entropic 0.378±0.322 0.045 2.112 0.388±0.320 0.044 2.032
COT-SFM 0.202±0.348 0.034 11.422 0.218±0.489 0.033 11.649
COT-SFM-Entropic 0.524±0.306 0.108 2.568 0.531±0.307 0.110 2.012

T-COT-FM (Kerrigan et al., 2024) 0.899±0.370 0.163 3.47 0.901±0.365 0.161 2.639
T-COT-SFM 0.636±0.279 0.235 2.331 0.637±0.282 0.194 2.335
T-COT-SFM (σy) 0.332±0.223 0.073 2.525 0.329±0.222 0.075 1.786

Figure 4. Collection of 5 randomly sampled trajectories from the test set in projections of PC1-PC2
and PC2-PC3 displaying (left) 128 samples in blue from CVSFM-Exact, with the expected value in
red, and (right) probability density and cumulative distribution function of absolute error compared
against alternate approaches.

5 Conclusions

We have proposed a novel framework, capable of learning to transform conditional distributions
between general source and target distributions given unpaired samples. With the same underlying
approach, we have also presented extensions capable of approximating the conditional Schrödinger
bridge problem. Our central contribution is a novel algorithmic framework for measures in
a conditional Wasserstein space, equipped with a regularized conditional distance metric, an
independent conditioning variable flow, and a kernel enforcing structure across the learned vector
fields in the conditioning variable. We verify our proposed approach through synthetic and real-
world tasks, demonstrating notable improvements over prior methods, and validating the feasibility
of learning conditional dynamical processes from unaligned measurements.
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A Appendix: Proofs of Theorems

A.1 Proof pt(x|y) and ut(x|y) satisfy the continuity equation

Theorem 3.1 The marginal conditional vector field Eq. (12) generates the marginal conditional
probability path Eq. (11) from p0(x|y) given any samples of q(z, w) independent of x, y, and t if
q(z, w) follows the conditional optimal coupling π(y0, y1) over w, and q(y0) = q(y1).

Proof. The continuity equation provides a necessary and sufficient condition for a vector field
to generate a probability distribution (Villani, 2009). Therefore, the proof is completed by
demonstrating that ut(x|y), defined by Eq. (12), meets the continuity equation for the conditional
distribution pt(x|y). We utilize the assumed decomposition introduced in the main body of the
paper, p(x, y|z, w) = p(x|z)p(y|w). Additionally, we assume that x is independent of w given
y, pt(x|y, w) = pt(x|y). Finally, we will require that p(y0) = p(y1). In other words, that the
distribution on the conditioning variable is the same at t0 and t1. We argue that this is not a very
restrictive requirement in practice. It is the situation that occurs in many applications, in particular
scientific dynamics problems where the distribution on conditions is constant over all time.

d

dt
(pt(x|y)) = −divx(pt(x|y)ut(x|y)) (A.1)

We begin with expanding the left hand side of the continuity equation in Eq. (A.1). To clarify
notation, we utilize p(·) to denote probability density functions over the primary variables, x and y.
We use q(·) to denote distributions over the pair variables z and w. The subscript t denotes time
dependence. Their arguments differentiate the multiple distributions of each type.

d

dt
(pt(x|y)) =

d

dt

(
pt(x, y)

pt(y)

)
=

d

dt

(∫
pt(x, y|w, z)

pt(y)
q(w, z)dzdw

)
We utilize the following assumed decomposition, pt(x, y|w, z) = pt(x|z)pt(y|w),
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=
d

dt

(∫
pt(x|z)pt(y|w)

pt(y)
q(w, z)dzdw

)

=

∫ pt(y|w)
pt(y)

d

dt
(pt(x|z))︸ ︷︷ ︸

T1

− pt(x|z)pt(y|w)
pt(y)2

d

dt
(pt(y))︸ ︷︷ ︸

T2

+
pt(x|z)
pt(y)

d

dt
(pt(y|w))︸ ︷︷ ︸

T3

 q(w, z)dzdw

We next consider each of the individual terms above. We will extensively rely upon the fact that
we have prescribed forms to ut(x|z) and ut(y|w) such that they generate pt(x|z) and pt(y|w),
respectively (see Theorem 3 of Lipman et al. (2023) or Theorem 2.1 in Tong et al. (2023b)). The
integrands are further assumed to satisfy the regularity conditions of the Leibniz Rule for changing
the order of integration and differentiation. Beginning with the first term, T1,

T1 =

∫
pt(y|w)
pt(y)

d

dt
(pt(x|z))q(w, z)dzdw

as u(x|z) generates p(x|z),

= −
∫

pt(y|w)
pt(y)

divx(pt(x|z)ut(x|z))q(w, z)dzdw

Leibniz Rule,

= −divx

(∫
pt(y|w)pt(x|z)q(w, z)

pt(y)
ut(x|z)dzdw

)
= −divx

(
pt(x|y)

∫
pt(y|w)pt(x|z)q(w, z)

pt(y)pt(x|y)
ut(x|z)dzdw

)
using the definition of ut(x|y), Eq. (12),

= −divx (pt(x|y)ut(x|y))

Here, we arrive at the right hand side of the continuity equation. Next, we turn to demonstrating that
terms T2 and T3 equate to zero. We begin inspecting the second term, T2,

T2 =

∫
−pt(x|z)pt(y|w)

pt(y)2
d

dt
(pt(y))q(w, z)dzdw

= − 1

pt(y)2
d

dt
(pt(y))

∫
pt(x|z)pt(y|w)q(w, z)dzdw

= −pt(x|y)
pt(y)

d

dt
pt(y)

Next, we consider the last term, T3, before returning to T2.

T3 =

∫
pt(x|z)
pt(y)

d

dt
(pt(y|w))q(w, z)dzdw

as ut(y|w) generates pt(y|w),
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= −
∫

pt(x|z)
pt(y)

divy(pt(y|w)ut(y|w))q(w, z)dzdw

Leibniz Rule,

= − 1

pt(y)
divy

(∫
ut(y|w)pt(x|z)pt(y|w)q(w, z)dzdw

)
marginalization on z, the chain rule of probability, and the second assumption outlined previously,

= − 1

pt(y)
divy

(∫
ut(y|w)pt(x|y)pt(y|w)q(w)dw

)
= − 1

pt(y)
divy

(
pt(x|y)pt(y)

∫
ut(y|w)

pt(y|w)q(w)
pt(y)

dw

)
definition of the marginal vector field, Eq. (8) in Lipman et al. (2023) or Eq. (9) in Tong et al. (2023b)

= − 1

pt(y)
divy (pt(x|y)pt(y)ut(y))

product rule,

= − 1

pt(y)
pt(y)ut(y)

T∇ypt(x|y)−
pt(x|y)
pt(y)

divy (pt(y)ut(y))

ut(y) generates pt(y),

= − 1

pt(y)
pt(y)ut(y)

T∇ypt(x|y) +
pt(x|y)
pt(y)

d

dt
pt(y)

= −ut(y)
T∇ypt(x|y) +

pt(x|y)
pt(y)

d

dt
pt(y)

Combining T1, T2, and T3 together, we obtain,

d

dt
(pt(x|y)) = T1 + T2 + T3

= −divx (pt(x|y)ut(x|y))−
pt(x|y)
pt(y)

d

dt
pt(y)− ut(y)

T∇ypt(x|y) +
pt(x|y)
pt(y)

d

dt
pt(y)

= −divx (pt(x|y)ut(x|y))− ut(y)
T∇ypt(x|y)

Optimal Transport between p(y0) = p(y1): The continuity equation is left with
−ut(y)

T∇ypt(x|y). In general, this remainder is nonzero. For arbitrary p(x0, y0) and p(x1, y1),
the ut(x|y) defined by Eq. (12) generates pt(x|y) only if the flow over y is carefully designed, such
that it is orthogonal to∇ypt(x|y) for all t.

In fact, in the problem settings discussed in this paper and under the proposed CVFM training
scheme, we are in one of these rare situations. Consider our final assumption: p(y0) = p(y1). When
p(y0) = p(y1), the optimal transport flow does nothing, resulting in dpt(y)/dt = 0 and ut(y) = 0.
Importantly, in CVFM, we only utilize a conditional flow, ut(y|w), which approximates the flow
over y, ut(y), in expectation. In general, this type of conditional approximation is not guaranteed to
produce the marginal optimal transport map. However, when static optimal transport is utilized in
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training, Tong et al. (2023a); Pooladian et al. (2023) show that this results in the expectation of the
conditional flow sufficiently approximating the marginal OT.

We directly observed the impact of minibatch OT and this remainder in early experiments. Without
minibatch OT, the learned ut(x|y) cannot generate the required marginal conditional vector field
generating pt(x|y). Only once conditional optimal transport was incorporated could the appropriate
push-forward operation be obtained. Importantly, this behavior differs from previous flow matching
efforts where learning the appropriate vector field is possible with or without optimal transport
(Albergo et al., 2023; Pooladian et al., 2023; Liu et al., 2022b; Tong et al., 2023a).

Therefore, because p(y0) = p(y1) and static optimal transport is used in training, Section 3.3, the
remainder disappears and ut(x|y) defined by Eq. (12) and pt(x|y) satisfy the continuity equation.

d

dt
(pt(x|y)) = −divx (pt(x|y)ut(x|y))−����:0

ut(y)
T ∇ypt(x|y)

= −divx (pt(x|y)ut(x|y))

A.2 Equivalence of the Flow Matching Objective

Theorem 3.2 If pt(x|y) > 0 for all x ∈ RN and for all y ∈ RM and t ∈ [0, 1], then, LMCFM(θ)
(r.h.s. below) and LCVFM(θ) are equal up to a constant, and hence:

∇θLCVFM(θ) = ∇θEt,pt(x,y)||vθ(x, y, t)− ut(x|y)||2 (A.2)

Proof. As in Lipman et al. (2023), several assumptions are necessary to guarantee the existence of
various intergrals and to allow exchanging of their order. Specifically, we assume q(w, z), pt(x|z),
pt(y|w) and p(w) decrease to zero as ∥x∥, ∥y∥ → ∞ and that vt, vt, and ∇θvt are bounded.
Expectations taken relative to π(z, w) as η →∞ results in α(w)→ 1.

We begin by stating the intractable marginal conditional flow matching (MCFM) objective

LMCFM (θ) = Et,pt(x,y)||vθ(x, y, t)− ut(x|y)||2 (A.3)

Expanding the L2-norm

LMCFM (θ) = Et,pt(x,y)||vθ(x, y, t)− ut(x|y)||2

= Et,pt(x,y)

||vθ(x, y, t)||2︸ ︷︷ ︸
T1

− 2 ⟨vθ(x, y, t), ut(x|y)⟩︸ ︷︷ ︸
T1

+ ||ut(x|y)||2︸ ︷︷ ︸
T3


Consider each term independently. Note, the third term can be ignored because it is independent of
the trainable parameters.

T1 = Et,pt(x,y)

[
∥vθ(x, y, t)∥2

]
= Et

[∫
pt(x, y, w, z)∥vθ(x, y, t)∥2dzdwdxdy

]
= Et

[∫
pt(x|z)pt(y|w)q(z, w)∥vθ(x, y, t)∥2dzdwdxdy

]
= Et,pt(x|z),pt(y|w),q(z,w)

[
∥vθ(x, y, t)∥2

]
Consider the second term.
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T2 = −2Et,pt(x,y) [⟨vθ(x, y, t), ut(x|y)⟩]

= −2Et

[∫
pt(x, y)

〈
vθ(x, y, t),

∫
ut(x|z)

pt(x, y|z, w)q(z, w)
pt(x, y)

dzdw

〉
dxdy

]
= −2Et

[∫
pt(x, y)

pt(x, y|z, w)q(z, w)
pt(x, y)

⟨vθ(x, y, t), ut(x|z)⟩ dxdydzdw
]

= −2Et

[∫
pt(x|z)pt(y|z)q(z, w) ⟨vθ(x, y, t), ut(x|z)⟩ dxdydzdw

]
= −2Et,pt(x|z),pt(y|z),q(z,w) [⟨vθ(x, y, t), ut(x|z)⟩]

Combining these together and comparing them against the expanded form for LCV FM (θ), we
clearly see that the LMCFM (θ) and LCV FM (θ) objectives are equivalent up until a constant
independent of the training parameters, θ.

A.3 Continuity Across Conditional Vector Fields

Theorem 3.3 If vθ(x, y, t) is locally Lipschitz continuous, pt(y|w), pt(x|z) ∈ C∞, and LCV FM (θ)
is continuous and differentiable with respect to y, then the learned network vθ(x, y, t) generates
conditional probability paths across the conditional Wasserstein density manifold.

Proof. By the composition theorem, the composition of continuous functions results in a function
which is similarly continuous.

We begin with the empirical distribution q(z, w), which as a finite sum of Dirac delta functions
is itself not inherently continuous, although expectations taken with respect to q(z, w) are.
Also by construction pt(y|w), pt(x|z) are smooth and continuous distributions. LCV FM (θ)
(Eq. (3)) is a continuous function of vθ(x, y, t), α(w), and ut(x|z) by which expectations over
q(z, w), pt(y|w), pt(x|z) maintain this property.

Empirical samples are drawn according to the OT coupling π(z, w), minimizing the ground cost
defined in Eq. (15), and inducing a gradient flow in the Wasserstein sense. Section A.1 previously
established adherence to the continuity equation.

Therefore, the learned network vθ(x, y, t) results in a continuous vector field across y, generating
pt(x|y) which respects the underlying geometry of the Wasserstein density space.

B Appendix: Case Study Background

B.1 Microstructure Evolution in Materials Informatics

Phase-Field modeling: Phase-field simulations are commonly applied to model a number of
manufacturing processes involving evolving interfaces (such as solidification/melting, spinodal
decomposition, grain growth, recrystallization, and crack propagation (Steinbach, 2009; Miehe
et al., 2010)). In particular, the Cahn-Hilliard equation is frequently used to describe spinodal
decomposition, a spontaneous thermodynamic-instability-induced phase separation (Cahn &
Hilliard, 1958); this partial differential equation models a diffusion-driven process with a diffusivity
constant D, driving the evolution of composition variations, c, over characteristic length scales
dictated by a gradient energy coefficient, γ. In our problem the spatially-dependent composition
will take the role of material microstructure.

δc

δt
= D∇2

(
c3 − c− γ∇2c

)
(B.1)

The dataset utilized in this paper’s third presented case study was simulated using the MEMPHIS
code base from Sandia National Labs (Dingreville et al., 2020). Details on the dataset are included
in Appendix E.6.
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2-Point spatial correlations: This work uses 2-point spatial correlations (Torquato, 2002; Kalidindi,
2015; Adams et al., 2013) as descriptive microstructure features. This representation builds on the
idea that the microstructure itself is a stochastic function, where individual observed microstructure
instances are simply samples from the governing stochastic microstructure function (Kröner,
1971; Torquato, 2002). Within this conceptualization, features – such as the 2-point statistics –
are designed to quantify the governing stochastic microstructure function since it is specifically
the governing stochastic microstructure function that dictates the properties and behaviors of a
sampled microstructure. This theoretical treatment accounts for the inherent stochasticity displayed
by material microstructures, and allows for the underlying stochastic function to be linked to
homogenized properties. It also provides a convenient mechanism to account for underlying
symmetries (such as translation-equivariance and periodicity).

In practice, 2-point spatial correlations can be computed as a convolution of the sampled discrete
microstructure function mα

s , where α indexes the material local state and s indexes the spatial voxel.
The resulting 2-point spatial correlations between two arbitrary material states, α and β, are then
defined by the operation

fαβ
r =

1

S

S∑
s=1

mα
sm

β
s+r (B.2)

where S is the number of voxels in the microstructural domain. These represent lower-order terms in
a moment expansion of the true microstructure random process; for a number of materials systems,
this term is dominant and captures most of the variation in bulk material properties (Kalidindi,
2015). Dimensionality reduction techniques can then be effectively applied to a dataset of 2-point
spatial correlations to provide robust, information-dense features for the construction of linkages
between process parameters and internal material structure (Gupta et al., 2015; Latypov et al., 2019;
Yabansu et al., 2020; Marshall & Kalidindi, 2021; Paulson et al., 2017; Generale & Kalidindi, 2021;
Kalidindi, 2020; Harrington et al., 2022).

C Appendix: Additional Simulation-Free Score and Flow Matching
Background

Tong et al. (2023a) proposed a simulation-free training objective for approximating continuous time
Schrodinger bridges (Bunne et al., 2023a; De Bortoli et al., 2023), generalizing Flow Matching
(FM) (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) to the case of stochastic dynamics
with arbitrary source distributions. Let p : [0, 1] × RN → R+ define a time-dependent probability
path, u : [0, 1] × RN → RN a time-dependent vector field, and g : [0, 1] → R>0 a continuous
positive diffusion function. An associated Itô stochastic differential equation (SDE) can be defined

dx = ut(x)dt+ g(t)dwt (C.1)

where ut(x) is equivalent to u(t, x), and dwt is standard Brownian motion. Utilizing the Fokker-
Planck equation and continuity equation, it is possible to derive the probability flow ordinary
differential equation (ODE) of the process (Tong et al., 2023a; Song et al., 2021) and comprise
a relation between the probability flow ODE ût(x) and the SDE drift as

ut(x) = ût(x) +
g2(t)

2
∇ log pt(x). (C.2)

As long as the probability flow ODE and score function can be specified, the SDE can be adequately
described. Tong et al. (2023a) demonstrated that the intuition underpinning Eq. (11) can also be
extended to the marginalization over conditional scores, resulting in the expressions

ût(x) =

∫
ût(x|z)

pt(x|z)q(z)
pt(x)

dz, ∇ log pt(x) =

∫
∇ log pt(x|z)

pt(x|z)q(z)
pt(x)

dz. (C.3)
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Gaussian marginal conditional flows: Prior works (Theorem 3 (Lipman et al., 2023), Theorem 2.1
(Tong et al., 2023b), Theorem 2.6, (Albergo & Vanden-Eijnden, 2023)) have demonstrated a method
for tractably evaluating Eq. (C.3) in the case where the ODE/SDE conditional flows are Gaussian
(i.e., pt(x|z) = N (x;µt(z), σ

2
t (z)). The unique vector field ût(x|z) generating this flow has the

form

ût(x|z) =
σ′
t(z)

σt(z)
(x− µt(z)) + µ′

t(z) (C.4)

where σ′
t(z) and µ′

t(z) denote the time derivatives of σt(z) and µt(z), respectively. This can
seamlessly be extended to define the conditional score∇ log pt(x|z) = −(x−µt(z))/σ

2
t (z). In the

particular case of a Brownian bridge from x0 to x1, sampled from q(z), with constant diffusion rate
g(t) = σ, the conditional flow is defined as pt(x|z) = N (x; tx1 + (1− t)x0, σ

2t(1− t)), resulting
in

ût(x|z) =
1− 2t

t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0)

∇ log pt(x|z) =
tx1 + (1− t)x0 − x

σ2t(1− t)
.

In a similar manner to the derivation shown in Appendix A, a density over initial conditions p(x0),
induces marginal distributions pt(x) satisfying the Fokker-Planck equation where ∆pt = ∇ · (∇pt)
(Tong et al., 2023a):

∂p

∂t
= −∇ · (ptut) +

g2(t)

2
∆pt (C.5)

In total, Tong et al. (2023a) demonstrate that the concept of regressing upon the conditional vector
field from FM can be extended to regressing upon conditional drift and score, providing improved
performance in practice.

Weighting schedule λ(t): In the case with conditional Gaussian pt(x|z) probability paths, as in Eq.
(C.4), Tong et al. (2023a) advocate a particular weighting schedule λ(t):

λ(t) =
2σt

σ2
=

2
√
t(1− t)

σ
. (C.6)

This weighting schedule provides simplification to the objective alongside numerical stability,
converting the score matching objective to

λ(t)2∥sθ(x, t)−∇x log pt(x|z)∥2 = ∥λ(t)sθ(x, t) + ε∥2 (C.7)

where ε ∼ N (0, 1).

D Appendix: Additional Case Study Specific Results

We move on towards presenting additional results obtained throughout this work. The results expand
upon the discussion presented in Section 4 towards interrogating the empirical performance of
CVFM, illuminating the critical advances necessary for learning conditional vector fields.

D.1 2D Experiments

In Figure 2 trajectories of the learned vector fields were presented for the 8 Gaussian - Moons
mapping with discrete conditioning and the Moons - Moons with continuous conditioning, although
this remains a fraction of the cases run. For completeness, we present the trajectories of all
methodologies evaluated in Table 1 in Figure D.1.
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Figure D.1. Comparison of obtained trajectories for various OT and SB modeling approaches in
the synthetic datasets considered associated with Wasserstein-2 error and normalized path energy
reported in Table 1. Trajectories are colored by the conditioning variable.

While, perhaps visually the simplest, the 8 Gaussian - 8 Gaussian mapping, consisting of a 45 degree
rotation about the origin, is demonstrably the most complex family of conditional vector fields to
learn given samples of the empirical distribution q(w, z). This is the only case in which only CVFM
variants reliably learn to disentangle the conditional dynamics (Figure D.1), while COT-FM attempts
to split mass to minimize transport costs across the joint X × Y : RN × RM , visualized by splits
mapping to target densities with similar conditioning values.

Objective Target Variance: One reason for the improved covergence of CVFM is the significantly
lower variance of the training objective target in CVFM in comparison to COT-FM. We define the
objective target variance (OTV) as

OTVCVFM = Et,q(z,w),p(w),pt(x,y|z,w)||ut(x|z)||2

OTVCOT-FM = Et,q(z,w),pt(x,y|z,w)||ut(x|z)||2
(D.1)

Notably, these equations do not include the true underlying conditional vector field and, as such,
the computed values should not be compared across test cases. Figure D.2 demonstrates the stark
contrast between COT-FM and CVFM on the 8 Gaussian - 8 Gaussian case, while Table D.1
details results for all 2D synthetic cases. This significant reduction in the target conditional vector
field variance enables the objective to provide consistent gradients during training of the network,
enabling improved convergence towards identifying the correct disentangled latent dynamics.

Conditioning Mismatch Kernel: The conditioning mismatch kernel α(w) plays a pivotal role in
the objective introduced in Eq. (13), which we duplicate here in its complete form.

LCVFM(θ) = Et,q(z,w),pt(x|z)pt(y|w)

[
α(w)∥vθ(x, y, t)− ut(x|z)∥2

]
(D.2)

The selected form of this kernel dictates the degree of continuity expected a priori in the observed
joint vector fields ut(x, y) across y ∈ RM , introducing an inductive bias in the solution across
this joint space, even if we only ever expect to evaluate the vector field in a conditional sense. In
this work, we select α(w) = exp(−w/2σ2

y) with observation w = y1 − y0, where the degree of
continuity in ut across the conditioning variable can be tailored through an appropriate selection of
σy .

Previously, in Table 1, we observed significantly improved performance with the introduction of
this additional rebalancing – which naturally raises questions as to its contribution in isolation.
Figure D.3 demonstrating that even by itself in the absence ot minibatch OT, the introduction of
α(w) is able to reliably equal or improve upon Wasserstein-2 target distribution error in comparison
with COT-FM and CVFM. Figure D.4 similarly shows an evaluation across η values (the weighting
in the optimal transport ground cost), highlighting the stability it introduces across all test cases
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Figure D.2. Objective
variance across batch sizes in
the 8 Gaussian-8 Gaussian
case.

Table D.1. Variance of the conditional objective across the
synthetic datasets considered swept across varying batch sizes.
Variance values were computed over 5 seeds with a conditioning
transport weight of η = 10. Values are reported as µ± σ.

Batch Size 8 Gaussian-8 Gaussian 8 Gaussian-Moons Moons-Moons

CVFM

16 6.465±0.561 7.847±1.405 0.699±0.157
32 2.896±0.364 3.618±0.142 0.179±0.030
64 1.515±0.200 1.648±0.268 0.044±0.007
128 0.678±0.0517 0.946±0.099 0.014±0.002
256 0.379±0.086 0.493±0.057 0.005±0.0005
512 0.175±0.032 0.216±0.043 0.002±0.0004

COT-FM

16 77.376±12.805 17.780±2.657 3.243±0.356
32 42.891±4.948 7.482±0.857 1.561±0.154
64 21.197±0.802 4.468±0.621 0.739±0.043
128 9.672±2.178 1.791±0.266 0.369±0.049
256 5.383±0.588 1.057±0.037 0.191±0.026
512 2.718±0.475 0.563±0.045 0.094±0.012

Figure D.3. Demonstration of the effectiveness of performing an expectation of the objective with
solely α(w) in comparison to the COT-FM and CVFM approaches. The use of α(w) in isolation is
better able to disentangle associated conditioning variables in almost all cases than the conditional
Wasserstein distance introduced in Eq. (15).

relative to minibatch OT solves with Eq. (15). In the 8 Gaussian - 8 Gaussian case, α(w) drastically
outperforms COT-FM, with comparable performance in the other mappings, albeit without providing
approximate OT within the conditioned vector fields. Due to this limitation, one might view α(w)
in isolation as a reliable extension to conditional CFM.

D.2 MNIST-FashionMNIST Domain Transfer

In this section, we further interrogate the results presented in Figures 2 and D.2, and their
implications in higher dimensional distributional mappings. The results previously presented
in Figure 3 illustrated the convergence characteristics of CVFM and COT-FM measured using
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Figure D.4. α(w) more reliably reduces Wasserstein-2 error to the target distribution in comparison
with COT-FM across values of η.

Table D.2. Comparison of conditional mean (FID) and unconditional FID scores (FID-All) for
10,000 samples alongside conditional LPIPS scores.

Model FID-All (↓) FID (↓) LPIPS (↓)
CVSFM (η = 1000) 11.668 32.915 0.159
COT-SFM (η = 1000) 14.965 36.456 0.161
CVSFM (η = 10) 23.554 48.326 0.175
COT-SFM (η = 10) 15.751 94.690 0.232

conditional image metrics. The improved convergence with increasing η of COT-FM only further
reinforces the value of ground cost scaling across y. Unfortunately, the optimal value of η is
problem dependent, and is particularly challenging to identify a priori. The conditional scaling
kernel ameliorates these difficulties. As shown in Figure D.2, the kernel significantly reduces the
objective variance in comparison with conditional OT, facilitating stable convergence upon more
accurate conditional OT mappings. This behavior was first observed in 2D examples in Figures 2
and D.1 and such characteristics extend to the high-dimensional setting. This increased stability
facilitates a greater tolerance on η values, ameliorating potential difficulties during hyperparaemter
optimization. In Figure D.5, we observe this stability through the inspection of randomly generated
samples from mapping the first class of MNIST to the first class of FashionMNIST. While in an
unconditional sense, COT-SFM with η = 10 is able to appropriately transfer between MNIST and
FashionMNIST, its consistency in mapping to the correct conditional distribution is lost without
elevated penalization in transport across y. In comparison, CVSFM is able to consistently map to
t-shirts/tops in the first class even with orders of magnitude difference in η. Similarly, in Figure 3,
the convergence behavior for CVFM degrades very little with large changes in η.

Figure 3 displayed the convergence characteristics of conditional FID and LPIPS scores,
conditionally evaluated for each class of p1(x|y), only serving to reinforce the prior discussion.
In comparison, in evaluating FID scores for p1(x) =

∫
p1(x|y)p(y)dy, distinctions in the

performance between CVSFM and COT-SFM are removed. Figure D.6 highlights the equivalence in
unconditional performance in this case study across 10,000 images. This discrepancy in conditional
to unconditional FID scores highlights limitations of minibatch sampling from the conditional OT
coupling πη((x0, y0), (x1, y1)). Even with elevated weighting on transport in the conditioning
variable, minibatch conditional OT provides a poorer approximation.

D.3 Material Dynamics

The mean absolute error metrics displayed in Table 2 provide point estimates of the performance
of our proposed method, providing evidence that we are capable of reliably disentangling the
latent processing dynamics of material microstructures across the conditional processing space,
given unpaired samples of process conditions and material state observed at discrete times. For
further interrogation, we present the estimated error distributions in Figure D.7 across all 2,000
material samples in the test set. In congruence with the results presented earlier, approximating the
conditional microstructure dynamics through a Neural ODE (Chen et al., 2018) nearly matches the
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Figure D.5. Comparison of 32 randomly generated images corresponding to the first class of
FashionMNIST with CVSFM and COT-SFM for η = 10 and η = 1000.

Figure D.6. Unconditional FID scores evaluated across 10,000 samples x ∼ p1(x) for COT-SFM
and CVSFM (η = 1000) during training.
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Figure D.7. (Left) probability density function, and (right) cumulative distribution function
of CVFM in comparison with evaluated conventional approaches requiring complete trajectory
information.

Figure D.8. Collection of three randomly sampled trajectories from the test set in PC space
displaying (top) 128 samples in blue from CVSFM, with the expected value in red, and (bottom)
deteriministic predictions of the LSTM and Neural ODE shown against the expected value of
CVSFM.

performance of the most optimal CVSFM-Exact variant, exhibiting similar tails and a mean shift
– a surprising fact given the stochastic nature of only viewing observations sampled from q(w, z).
Figure D.8 compares the dynamics predicted by the three models on several selected members of
the test dataset. Mirroring the distribution of errors in Figure D.7, the CVSFM model slightly
outperforms the other two while also providing uncertainty estimates. The panels in Figure D.8
display the dynamics projected onto individual principal component subspaces, αi.

E Appendix: Experimental Details

E.1 Algorithm

In this section, we present the general algorithm for Conditional Variable Flow Matching given
q(z, w), pt(x|z), pt(y|w) in Algorithm 1, and ut(x|z), and the Schödinger bridge extension with
flow and score matching given ∇x log pt(x|z) in Algorithm 2.

E.2 Static Optimal Transport

Static exact and entropic regularized optimal transport couplings were solved for in minibatches
during training through the Python Optimal Transport (POT) package (Flamary et al., 2021)
(https://pythonot.github.io/). As similarly reported in (Tong et al., 2023a), we noticed
improved performance in the low-dimensional toy cases with the Sinkhorn algorithm (Cuturi, 2013),
which degraded in higher dimensions (e.g., material dynamics, domain transfer). The use of
minibatch optimal transport has also been previously shown to regularize the transport plan (Fatras
et al., 2021b,a) due to the stochastic nature of the independent batch samplings forming non-optimal
couplings, in effect resulting in entropic-regularized OT plans, even with exact OT solves.
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Algorithm 1 Conditional Variable Flow Matching

Require: Source and target conditional distributions q0(z, w) and q1(z, w), noise σx, σy , and
network vθ.
while Training do

(x0, y0), (x1, y1) ∼ q(z, w)
t ∼ U(0, 1)
π ← OT((x0, y0), (x1, y1)) ▷ Interchangeable with Sinkhorn algorithm Cuturi (2013).
(x0, y0), (x1, y1) ∼ π(z, w)
α(w)← exp(−(y0 − y1)/2σ

2
y)

pt(x|z)← N (x; tx1 + (1− t)x0, σ
2
x)

pt(y|w)← N (y; ty1 + (1− t)y0, σ
2
y)

x ∼ pt(x|z)
y ∼ pt(y|w)
ut(x|z)← x1 − x0

LCVFM(θ)← Et,q(z,w),pt(x,y|z,w)α(w) ∥vθ(x, y, t)− ut(x|z)∥2

θ ← Update(θ,∇θLCVFM(θ))
end while
return vθ

Algorithm 2 Conditional Variable Score and Flow Matching

Require: Source and target conditional distributions q0(z, w) and q1(z, w), noise σx, σy , weighting
schedule λ(t), drift network vθ, and score network sθ.
while Training do

(x0, y0), (x1, y1) ∼ q(z, w)
t ∼ U(0, 1)
π ← Sinkhorn((x0, y0), (x1, y1), 2σ

2
x)

(x0, y0), (x1, y1) ∼ π(z, w)
α(w)← exp(−(y0 − y1)/2σ

2
y)

pt(x|z)← N (x; tx1 + (1− t)x0, σ
2
xt(1− t))

pt(y|w)← N (y; ty1 + (1− t)y0, σ
2
yt(1− t))

x ∼ pt(x|z)
y ∼ pt(y|w)
ut(x|z)← ((1− 2t)/(2t(1− t)))(x− (tx1 + (1− t)x0)) + (x1 − x0)
∇x log pt(x|z)← (tx1 + (1− t)x0 − x)/(σ2

xt(1− t))

LCVSFM(θ)← Et,q(z,w),pt(x,y|z,w)α(w)
[
∥vθ(x, y, t)− ut(x|z)∥2 + λ(t)2∥sθ(x, y, t)−∇x log pt(x|z)∥2

]
θ ← Update(θ,∇θLCVSFM(θ))

end while
return vθ, sθ

E.3 Computational Resources

All experiments were performed on a high-performance-computing cluster with CPU nodes of 24
CPUs and GPU nodes with V100 and A100 GPUs. 2D experiments were all performed on 1 V100,
domain transfer and material dynamics experiments were performed on 4x V100’s or 2x A100’s.

E.4 2D Experimental Details

For all 2D synthetic dataset cases we used networks of four layers with width 128 and GELU
activations (Hendrycks & Gimpel, 2023). Optimization was carried out with a constant learning
rate of 1e − 3 and ADAM-W (Loshchilov & Hutter, 2019) over 10,000 steps and a batch size of
256, unless otherwise specified. Sampling was performed by integration with with the adaptive step
size dopri5 solver and tolerances atol = rtol = 1e− 5. Conditional probability paths pt(x|z)
were defined with σx = 0.1, which was held constant throughout all cases. Values of η and σy for
pt(y|w) were varied between discrete and continuous conditioning cases. In discrete conditioning
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cases (8 Gaussian - 8 Gaussian and 8 Gaussian - Moons), σy = 0.02 and η = 100, whereas in the
continuous conditioning case (Moons - Moons), σy = 0.5 and η = 5.

The assignment of classes for each of the 2D synthetic datasets was performed in the discrete
conditioning cases (e.g., 8 Gaussian - 8 Gaussian and 8 Gaussian - Moons) by maintaining the
distinct 8 classes between the source and target densities. In the case of the 8 Gaussian - 8 Gaussian
mapping, each of the Gaussians maintained it’s own class assignment. For the 8 Gaussian - Moons
mapping, the 2 Moons were discretized with assignment provided based on relative angle to the
origin of each particular moon. Classes for each moon were broken into 4 groups based on 45o

degree segments. The Moons - Moons mapping was established with a 90o degree rotation of the
target density about the origin, and continuous conditioning assignment provided by the expression
y = (x0−10)I[0,1]+(1−I[0,1])(x0+10), where I[0,1] denotes the initial binary moon classification.

Empirical values of the Wasserstein-2 distance were evaluated through 2,048 samples simulated
through the learned conditional vector fields and computed against an equivalent number of samples
from the target distribution. The W2 reported distance differs depending on cases with continuous
or discrete conditioning. In the discrete case, we take the mean of the conventional W2 distance
across all conditioning classes

W2(p̂1, q1) = Ey∼p(y)

[(
inf

π∈Π(p̂1,q1)

∫
∥xi − xj∥2dπ(xi, xj)

)1/2
]

(E.1)

while in the continuous case, we incorporate the conditional ground cost as

W2(p̂1, q1) =

(
inf

π∈Π(p̂1,q1)

∫ [
∥xi − xj∥2+η∥yi − yj∥2

]
dπ((xi, yi), (xj , yj))

)1/2

(E.2)

with η = 1e5. Both distances are computed between samples from the target distribution q1, and
samples from q0 simulated forward to t = 1 as p̂1.

Similar to Tong et al. (2023b,a) and Shi et al. (2023), we also report the normalized path energy
with a similar continuous/discrete split, either as the expected value across all classes in the discrete
case, or with the cost as in Eq. (15). For brevity, we only repeat the normalized path energy with
this latter formulation

NPE(q0, p̂1) =

∣∣Eq0(z,w)

∫
∥vθ(x, y, t)∥2dt−W 2

2 (q0, p̂1)
∣∣

W 2
2 (q0, p̂1)

. (E.3)

This quantity provides a normalized measure for the deviation of the path energy learned by the
model vθ to that which would be optimal, equivalent to the squared Wasserstein-2 distance denoting
constant velocity trajectories.

E.5 MNIST-FashionMNIST Experimental Details

The MNIST-FashionMNIST domain transfer experiments utilized a UNet architecture developed
by OpenAI (https://github.com/openai/guided-diffusion/tree/main). The
network configuration utilized in this work consisted of 64 channels, with channel multiples of
[1,2,2,2]. 4 heads of self-attention over 16 and 8 resolution were applied with 2 residual blocks.
Optimization was carried out with cosine annealing of the learning rate from 1e − 4 to 1e − 8 and
ADAM-W Loshchilov & Hutter (2019) with weight decay 1e−4 for ranges of 3,750 - 10,000 epochs
and batch size of 1024, or equivalently 220,000 - 590,000 steps. Conditional probability paths were
constructed with σx = 0.1, σy = 1e− 3, and minibatch conditional OT was performed with η = 10
and η = 1000.

Unconditional FID scores were computed over 10,000 samples using Clean-FID (https://
github.com/GaParmar/clean-fid). Conditional FID scores were computed using the
same algorithm, however the calculation was restricted to a subset of the total samples with
matching conditioning (1,000 samples per class). LPIPS scores were computed using torchmetrics
(https://github.com/Lightning-AI/torchmetrics).
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E.6 Material Dynamics Experimental Details

All material specific cases used networks with five layers of width 256 and GELU activations
(Hendrycks & Gimpel, 2023). Skip connections were applied over the middle three layers. The
conditioning variable was subject to both self-attention and time cross-attention with an embedding
dimensionality of 64 and 8 heads. The same network architecture was used in T-COT-FM, and
for both drift and score networks in CVSFM, COT-SFM, and T-COT-SFM. It was duplicated for
the NeuralODE benchmark. The LSTM benchmark consisted of four layers with width 512 for
approximately equivalent parameterization. Optimization was carried out with cosine annealing of
the learning rate from 1e−3 to 1e−8 and ADAM-W Loshchilov & Hutter (2019) with weight decay
1e−2 over 7,800 steps and a batch size of 256. Conditional probability paths were constructed with
σx = 0.1, σy = 0.01, and minibatch conditional OT was performed with η = 10. While, T-COT-FM
in it’s initial formulation does not include a varying noise schedule across the conditioning variable,
we have also included an ablation with this extension, mirroring the same value of σy .

The available dataset was established through spinodal decomposition simulations in MEMPHIS
(Dingreville et al., 2020). The dataset contains 10,000 two-phase microstructures of size 256× 256
voxels, each associated with processing parameters θ1 and θ2, sampled according to the log-uniform
log(θ) ∼ U(log(0.1), log(100)), and θ3 ∼ U(−0.7, 0.7). These processing parameters correspond
to the mobility parameters of the two constituents (θ1, θ2), and initial relative concentrations (θ3).
Mean absolute error values, along with minimum and maximum absolute error reported in Table 2
were evaluated on a test set of 2,000 microstructures, and a training set of 8,000 microstructures.
2-point statistics were computed for all 100 recorded frames, constituting the trajectory of an
individual microstructure, and compressed via Principal Component Analysis (PCA). All models
were trained on the first 5 PC dimensions.
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