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A B S T R A C T

Generative modeling has opened new avenues for solving previously intractable materials design problems.
However, these new opportunities are accompanied by a drastic increase in the required amount of training
data. This is in stark juxtaposition to the high expense and difficulty in curating such large materials datasets.
In this work, we propose a novel framework for integrating generative models within an active learning loop.
This enables the training of generative models with datasets significantly smaller than what has previously been
demonstrated, providing a direct route for their application in data constrained environments. The functionality
of this framework is then demonstrated by addressing the challenge of designing polycrystalline textures
associated with target anisotropic mechanical properties. The developed protocol exhibited a cost reduction
between 14 to 18 times over a randomly sampled experimental design.
1. Introduction

The development of computational algorithms/frameworks for per-
forming materials design is a central goal of several recent and ongoing
Materials Informatics and ICME (Integrated Computational Materials
Engineering) efforts [1–9]. These algorithms facilitate the proposal of
novel material internal structures corresponding to targeted properties
of engineering interest (e.g., mechanical, thermal, magnetic, etc.) [10–
15]. A subset of these algorithms are aimed at enabling microstructure
sensitive design - where the goal is to specifically design a material’s
microstructure to meet the designer-specified combination of effective
macroscale properties [1,10,12,16,17]. This task can be classified as
an inverse problem, where the goal is to identify inverse solutions
(predict microstructures given properties) given a predefined forward
model (predict properties given microstructures). Due to extremely
large and high-dimensional design spaces, the task of microstructure
design constitutes a highly challenging inverse problem, even when
there already exists an acceptable forward model [2,12]. In microstruc-
ture design, the forward models exhibit three characteristics that make
inverting them challenging: (1) The forward mappings are typically ill-
posed (i.e., many-to-one) meaning that multiple microstructures are
expected to result in the same homogenized properties, resulting in
non-unique solutions. (2) Various uncertainties prevail in the forward
model, which reflect inadequate understanding of either the model
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forms or the values of the fitting parameters employed in the es-
tablished forward model. (3) Descriptions of the microstructure are
inherently high-dimensional, thereby presenting major challenges to
the efficient exploration of the design space. Although notable advances
have been made in this direction (e.g., property closures [18–20] and
Bayesian optimization [21]), the approaches pursued in current litera-
ture do not adequately address the computational challenges involved
in the efficient exploration of high-dimensional design spaces [18,22–
24].

Bayesian inference [25–28] offers a practical avenue for overcoming
the aforementioned challenges. Rather than attempting a determin-
istic inversion, Bayesian inference aims to identify a distribution of
potential solutions, permitting a robust quantification of uncertainty
of the variables involved. Most importantly, Bayesian methods allow
for the incorporation of prior information into the inversion, providing
critically needed regularization. Specifically, these approaches aim to
solve inverse problems through the use of Bayes rule [26,28]:

𝑝(𝐱|𝐲) ∝ 𝑝(𝐲|𝐱)𝑝(𝐱) (1)

where, 𝐲 denotes an output of interest and 𝐱 is the corresponding input
of a noisy mapping (e.g., 𝑦 = 𝑓 (𝑥) + 𝜀). Bayesian inference makes the
inversion tractable, despite the inversion being an ill-posed problem,
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by limiting the search space through the regularization via the specifi-
cation of the prior 𝑝(𝐱). Traditional algorithms for performing Bayesian
nference (such as Markov Chain Monte Carlo [29–34]) have struggled

to address the challenges of high-dimensionality, while optimization-
based variational inference approximations circumvent this limitation,
they have traditionally been severely limited in their flexibility, due to
the assumed form of the target posterior [35]. Only recently have novel
enerative modeling frameworks made Bayesian inference tractable in
igh-dimensional spaces [2,3,12]. In particular, recent advances have
emonstrated the unique capabilities of generative models in the formal
tochastic treatment of the mesoscale details of heterogeneous material
ystems [2,36–40]. These efforts have made clear that such generative
odels offer a viable strategy capable of addressing all three challenges

utlined previously. Detrimentally, the incorporation of these models
emands a significant increase in the amount of training data re-
uired for establishing the desired mappings in these high-dimensional
paces. Consequently, the use of generative models for designing mi-
rostructures has been limited to applications where a large number of
imulations are readily available; recent works have used 11,000 [3]
o 70,000 [1] numerical simulations. Such large dataset requirements

impede the adoption of generative models to problems with elevated
computational, or physical costs of dataset generation (e.g., complex
physics-based simulations [41,42] or sophisticated experiments [43–
45]). Our main goal in this work is to explore active learning strategies
towards enabling a dramatic reduction in the data requirements for
roducing reliable generative models.

We formulate materials design as learning the generative inverse
model, 𝑓 (⋅), which approximates the distribution 𝑝(𝐦|𝐏), where we de-
ine 𝐦 as a suitable (frequently high-dimensional) representation of the
aterials’ internal structure, and 𝐏 a set of properties of interest. It is
ighly desirable to explore opportunities to actively learn 𝑓 (⋅) because
f the high computational cost of producing the training data [23,46].

However, typical protocols involved in active learning break down in
the inverse direction. More specifically, the steps involved include (i)
querying the current version of the model being learned on a large num-
ber of candidate inputs, (ii) applying a selection criteria to determine
the specific candidate input that exhibits the highest expected potential
for improving the model fidelity, and (iii) interrogating the selected
points to generate new ground truth data, which is then added to the
training dataset [47]. The three-step active learning process described
above is then repeated until a stopping criteria is met, indicating
a saturation point past which the incorporation of additional data
provides minimal novel information to the underlying model.

The execution of these steps becomes intractable when attempting
o learn inverse mappings such as 𝑓 (⋅), as a byproduct of the ill-posed

nature of such inverse mappings in which multiple or no solutions may
exist [48]. This poses direct hurdles in executing steps (i) and (iii) of
active learning described above, and indirect hurdles in executing step
(ii). For example, the query on a potential candidate input can produce
distinct multiple outputs, raising questions regarding the application
of a selection criteria [47]. Furthermore, knowledge regarding ground
truth function evaluations can often only be interrogated in the forward
direction. In other words, even if a desirable candidate point for train-
ing is identified, we often have no way of evaluating the ground truth
in the inverse direction to establish a new reliable training data point.
As a direct consequence of these challenges, novel strategies are needed
to objectively select new candidates for training 𝑓 (⋅).

In an effort to circumvent the hurdles described above, we turn to
 novel paradigm pursued in recent works [2,12]. Here, a surrogate
odel (typically a Gaussian process), 𝑔(⋅), substitutes the ground truth

forward process, i.e., 𝑔(⋅) ≈ 𝑝(𝐏|𝐦). The inverse generative model, 𝑓 (⋅),
is then trained on a synthetic dataset produced by repeatedly sampling
the surrogate throughout its domain [2,49]. These studies have also
emonstrated that replacing 𝑔(⋅) for the ground truth does not signifi-
antly impact the accuracy of 𝑓 (⋅) [2]. Essentially, this approach seeks

to establish approximations to both conditional distributions of interest,
2 
𝑝(𝐏|𝐦) and 𝑝(𝐦|𝐏). Previous work by Generale et al. [2] chose to
learn the functions 𝑔(⋅) and 𝑓 (⋅) sequentially. In other words, they first
trained 𝑔(⋅) in isolation, then subsequently trained 𝑓 (⋅). This sequential
pproach results in the function 𝑔(⋅)’s estimation of 𝑝(𝐏|𝐦) being static
hroughout the training of 𝑓 (⋅). In contrast, we aim to simultaneously
earn both forward and inverse maps, providing dynamic refinement of
(𝐏|𝐦) and 𝑝(𝐦|𝐏), respectively, for any iterative cycle of the training
rocess. These dynamic estimates are then utilized to implement novel
nd suitably-designed active learning strategies for efficient learning
f both the forward and inverse maps. Specifically, we propose to im-
lement a selection criteria defined on 𝑝(𝐏|𝐦) (based on typical metrics
uch as maximum variance), combined with a stopping criteria defined
n 𝑝(𝐦|𝐏) (based on stabilization of the posterior density).

The novel framework proposed and demonstrated in this work
ffectively combines data-efficient approaches for learning forward

models with the expressive power of generative modeling for inverse
solutions. Specifically, the proposed framework exhibits the follow-
ing desired features: (i) Data Efficiency - the framework employs a
novel active learning strategy for optimal training of desired map-
pings with sparse datasets in regimes with high costs of data cu-
ration; (ii) High Dimensionality - inference remains feasible across
high-dimensional microstructure spaces; (iii) Probabilistic - the model
can quantify uncertainty and is flexible enough to capture potentially
complex multimodal distributions of inverse solutions.

The example application selected for the present study using the
proposed framework involves the design of polycrystalline microstruc-
tures exhibiting a targeted set of anisotropic plasticity properties. More
specifically, features of the polycrystalline microstructures considered
in the design process are restricted to the crystallographic orientations
(i.e., texture) in the sample, while the plastic properties are taken
to be directional yield stress and lateral strain increment values that
could be used to define the anisotropic yield surface of the material.
The forward relationships between the crystallographic texture and
their anisotropic mechanical response have been studied extensively in
prior literature [13,50–55]. However, performing design for this class
of problems has remained challenging due to the high-dimensionality,
ill-posedness, and non-linearity involved. For the selected case study,
the material microstructure (i.e., texture) is represented using the first
38 coefficients of the Generalized Spherical Harmonic (GSH) expan-
ion [56], and the plastic response of interest is represented using 54

anisotropy parameters (18 stresses and 36 strain increments) [52,57].
For the desired high-fidelity forward and inverse maps between these
high-dimensional spaces, the use of the proposed framework resulted
in an improvement of a factor between 14 to 18 in data efficiency over
random sampling . Thus enabling the establishment of an inverse model
in a data-efficient and data-driven manner.

2. Theoretical background

2.1. Texture and plastic anisotropy

The distribution of crystal lattice orientations in polycrystalline
metallic samples (i.e., texture) is one of the main contributors to their
anisotropic plastic response [15,19,52,57–61]. This is largely a conse-
quence of the fact that the dominant mechanism of plastic deformation
in most metals is dislocation slip, occurring exclusively on certain pre-
ferred planes and directions in a single crystal [50]. Plastic anisotropy
is critical in accurate predictions of formability and structural failure
in sheet metals, and is typically described by continuum-scale phe-
omenological yield models [59,62,63]. For establishing the surrogate
odels of interest for the present study, we first must adopt suitable

epresentations for both texture and plastic anisotropy.
Mathematically, texture is quantified by 1-point statistics of the

rystal lattice orientations in the sample, using a function known as the
orientation distribution function (ODF). The crystal lattice orientation,
𝜁 , at any point in a polycrystalline sample can be represented by a
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set of three Bunge–Euler angles, i.e., 𝜁 = (𝜑1, 𝛷 , 𝜑2) [10,56]. The ODF
expresses the probability density over the orientation space in a given
polycrystalline sample. Any function over the orientation space can be
represented using a basis known as Generalized Spherical Harmonics
(GSH) [10,56]. Specifically, the ODF, denoted as  (𝜁 ), can be expanded
as

 (𝜁 ) =
∞
∑

𝑙=0

𝑈 (𝑙)
∑

𝑢=1

𝑁(𝑙)
∑

𝑣=1
𝐶𝑢𝑣
𝑙

̇̈𝑇 𝑢𝑣
𝑙 (𝜁 ) (2)

where, 𝐶𝑢𝑣
𝑙 represents the spectral coefficients and ̇̈𝑇 𝑢𝑣

𝑙 denote suitably
symmetrized GSH basis reflecting the symmetries arising from both the
single crystal and sample scale considerations [56].

An important property of the GSH expansion is that single crys-
tal microstructures are represented as impulse distributions. The GSH
coefficients for the single crystal microstructures are then expressed
as [56]

𝐶𝑢𝑣
𝑙 = (2𝑙 + 1) ̇̈𝑇 ∗𝑢𝑣

𝑙 (𝜁𝑜) (3)

where, 𝜁𝑜 denotes the lattice orientation in such microstructures, and
* denotes the complex conjugate. Since the ODF of any polycrystal
microstructure can be expressed as a weighted sum of single crystal
ODFs, one can show that the GSH space corresponding to all physically
realizable ODFs is in fact convex [10]. This property of the GSH
representations will become critical later when defining the selection
candidate pool in this work. The GSH expansion shown in Eq. (2)
ontains an infinite number of terms, and thus in practice must be
runcated. Following prior work on polycrystalline microstructures ex-

hibiting cubic-orthorhombic symmetries, we consider only the first 38
erms of this expansion in this work [20,52,57], which corresponds to
 truncation level of 𝑙 = 12.

The classical approach for modeling macroscale metal plasticity
involves utilization of a yield criterion that describes the onset of
plastic flow, the evolution of the yield surface with plastic defor-
mation, and the direction of the plastic flow (flow rule). Using this
approach, a considerable number of plastic anisotropic yield models
have been developed [64–68]. These constitutive models are parame-
erized by directionally-dependent parameters such as yield strengths
nd/or r-values. However, these macroscale yield models do not di-
ectly incorporate the effect of crystallographic texture on the resultant
nisotropic response of the metal alloy. In this work, we are primarily
nterested in capturing the influence of texture on the anisotropic yield
urface for the polycrystalline microstructure, as predicted by advanced
omputational micromechanical models such as the crystal plasticity
CP) models [57,69,70].

Following the success of previous work [57], we characterize the in-
luence that texture has on the anisotropic behavior of a polycrystalline

materials by using a set of normalized yield stresses and normalized
ateral plastic strain increments. Specifically, these quantities were ob-
ained from CP simulations [55,57], defining the ground truth forward
odel as 𝑔∗(⋅) throughout this work. Function evaluations of this model

orrespond to imposing a plastic work increment of 0.4 MPa under
niaxial tension conditions in a selected set of sample directions. The
ensile loading directions were selected at 15 degrees increments in

the 𝑋 − 𝑌 , 𝑌 − 𝑍 and 𝑍 − 𝑋 planes (a total of 18 directions). At
each tensile direction 𝑘, a yield stress is extracted and normalized by
the yield stress in the 𝑋 direction. The normalized yield stress for a
irection 𝑘 is denoted by 𝜎𝑜,𝑘𝑛𝑜𝑟𝑚. Additionally, at each direction 𝑘, two

lateral plastic strain increments were also obtained. The two lateral
plastic strain increments were similarly normalized so that the product
plastic work increment becomes the unit value of 1. The normalized
lateral plastic strain increments for a tensile direction 𝑘 are denoted
by 𝛿𝑘𝑖𝑛𝑐1,2 . Therefore, each microstructure has a total of 54 anisotropy
parameters, which correspond to 18 normalized yield stresses and 36
ormalized lateral plastic strain increments. A detailed description of
he crystal plasticity framework and simulation procedure can be found
n [57]. This dataset consisted of 13,408 single crystal and 61,482
3 
polycrystalline textures, and their associated values of 𝜎𝑜,𝑘𝑛𝑜𝑟𝑚 and 𝛿𝑘𝑖𝑛𝑐1,2 .
This large collection of ground truth data is invaluable in evaluating the
efficacy of our active learning framework. While our active learning
strategy will ultimately use only a fraction of this dataset, this large
dataset allows us to train a second generative model across the entirety
of the available dataset, serving as a point of reference for our frame-
work moving forward. Establishing this baseline is key as it permits a
more rigorous evaluation of solution posterior distributions throughout
the active learning process.

2.2. Active learning

With the inputs and outputs defined, we now turn our attention to
actively learning models for the forward and inverse relationships. All
active learning efforts require three key components: (i) the ability to
generate a candidate pool of potential experiments to run, (ii) a suitable
orm for the surrogate model, and (iii) a selection criteria compatible
ith the surrogate model. Our choices for each of these requirements
re described in the following sections.

2.2.1. Candidate pool generation
Approaches for generating candidates broadly divides active learn-

ing into three distinct classes: pool-based, stream-based, and mem-
bership query synthesis [47]. Given our existing dataset, this study
everages pool-based active learning schemes, where a set of candi-
ates is defined a priori (in contrast to the other two methods where
andidates are created throughout the learning process). In pool-based
ctive learning schemes, the candidate set denotes all possible inputs
microstructures) which could be interrogated to obtain ground truth
utputs (properties). In the pursuit of the best design solutions, it would

be ideal for the candidate pool to fill the entire space of possible inputs.
This is key for two reasons. First, by covering the input space, we
implicitly cover the output space, allowing our active learning strategy
to potentially explore the entire space of achievable properties. Second,
the generative model’s capacity to identify a diverse set of inverse
solutions is inherently tied to the diversity of the candidate pool. From
a Bayesian perspective, the candidate pool represents a prior 𝑝(𝐦) for
the generative model, enforcing background knowledge regarding the
nversion [2,12]. Revisiting Bayes rule, 𝑝(𝐦|𝐏) ∝ 𝑝(𝐏|𝐦)𝑝(𝐦), we can
ee that our generative model (i.e., approximation to 𝑝(𝐦|𝐏)) will be
nlikely to propose new inverse solutions outside the prior where 𝑝(𝐦)
s small. A tight prior could therefore limit the generative model from
roposing otherwise acceptable inverse solutions.

Given this background, we turn our primary focus towards ob-
aining a diverse candidate pool covering the complete input space.

Looking more closely at our GSH representations of texture, we note
that the space of valid GSH coefficients forms a convex set constructed
via the interpolation of single crystal impulse ODFs [10,56]. This
property of the GSH is critical for two reasons: (i) It allows us to
approximately define the boundary of the candidate space, thus elu-
cidating what candidates are acceptable (i.e., 𝑝(𝐦) is zero for points
outside the boundary). (ii) It allows us to sample from the candidate
space (i.e., through interpolations of points on the boundary). These
properties of the GSH allow for the creation of a diverse candidate
pool which nearly fills the entirety of the input space. Prior works
have similarly followed this procedure to create space filling designs
over the GSH convex hull. In this work, we will utilize the dataset
from Park et al. [52,57] given the fact that they thoroughly sample
he GSH convex hull. It is important to note that the creation of space-
illing candidate pools is a non-trivial task. This is particularly true for

higher-order microstructure statistics which go beyond the ODF, which
remains a current area of active research [8,36–39].
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2.2.2. Multi-output Gaussian process regression
The next step is to identify a surrogate forward modeling strat-

gy that is well suited for active learning. Within pool-based active
earning schemes, there are multiple choices of algorithms based on
robabilistic approaches [71,72], committee methods [73,74], and oth-

ers [47]. The corresponding options for surrogate modeling are also
varied (e.g., Gaussian Process Regression [75], Bayesian neural net-
works [76,77], Committee neural networks [73] and Random Forest
Committees [26]). Taking into account the constraints of the problem
at hand such as data efficiency, uncertainty quantification, and the
high non-linearity of the forward model, the most suitable choice
or the selected application is a probabilistic active learning scheme
tilizing Gaussian Process Regression (GPR). In particular, Gaussian
rocesses (GPs) have been shown to be effective learners on small
atasets [75], have varied established active learning criteria [47], and
ffer uncertainty quantification [75].

The forward model 𝑔(⋅) aims to approximate the likelihood, 𝑔(⋅) ≈
(𝐏|𝐦). Leveraging GPs, we represent 𝑔(⋅) = (𝑣(⋅), 𝑘(⋅, ⋅′)), where 𝑣(⋅)

is the mean function, and 𝑘(⋅, ⋅′) is the covariance function. Typically, a
zero-mean approximation, i.e., 𝑣(⋅) = 0, is invoked, consistent with the
typical practice of normalizing all input and output variables to exhibit
zero means and unit variances (i.e., z-scores [75]). The covariance
function aims to identify the similarity or correlation between any two
oints in microstructure space 𝐦 and 𝐦′. The common Radial Basis
unction (RBF) with Automatic Relevance Determination (ARD) is used
n this work [75]:

𝑘(𝐦,𝐦′) = 𝑒𝑥𝑝

(

−1
2

𝐷
∑

𝑗=1

1
𝑙2𝑗
(𝑚𝑗 − 𝑚′

𝑗 )
2

)

(4)

where, 𝐷 is the dimensionality of the microstructure representation
m, and 𝑙𝑗 is a hyper-parameter representing the characteristic length-
scale of each dimension. Since our application requires consideration
of possibly correlated outputs (i.e., 𝐏 ∈ R𝐻 ), we leverage Multi-

utput Gaussian Processes (MOGPs) based on the Linear Method of
Coregionalization (LMC), which constructs the multi-output function
via a linear transformation 𝐖 ∈ R𝐻×𝐿 of 𝐿 latent Gaussian processes,
(𝐦) = {(0, 𝑘𝑙(⋅, ⋅′))}𝐿𝑙=1, each with its own covariance function. The
orward model is then expressed as:

𝑔(𝐦) = 𝐖𝑞(𝐦) (5)

2.2.3. Selection criteria
As the last step of the active learning algorithm, we define a selec-

tion criteria to identify the most promising candidates for the sequential
generation of new training data points. Specifically, this requires the
adoption and computation of a scalar metric for each member of the
candidate pool. A large variety of selection criteria have been employed
in prior literature [47]. For the present application, we must employ a
selection criteria that is compatible with Gaussian Process Regression
— our choice for building the forward model. The simplest approach
for the present application would be to use the Maximum Variance
(MV) criterion, as this information is already computed in the GPR.
Specifically, the MV criteria selects the next training point as the
candidate that exhibits the highest prediction uncertainty estimated by
the GPR. The MV criterion has been observed to work well when the
noise in the forward model is roughly uniform throughout the input
domain [47]. For the present application, since the MOGPs prediction
ariance will be a matrix, we adopt its determinant as the selection
riterion.

2.3. Generative modeling: Conditional normalizing flows

Next, we turn our attention towards generative modeling strate-
gies which will identify the desired inverse solutions. Prior efforts in
materials design have explored variational autoencoders (VAEs) [12],
4 
diffusion models [1], normalizing flows [3], continuous normalizing
flows [2], and generative adversarial networks (GANs) [78]. For this
work, we opted to use conditional normalizing flows (cNFs) due to their
rigorous probabilistic formulation (necessary for accurate density esti-
mation) [79], efficient training and evaluation times (critical when the

odel will be trained repeatedly in an active learning loop) [80], and
easy likelihood computations [35,81]. The goal of our generative model
s to approximate the distribution 𝑝(𝐦|𝐏). A cNF aims to approximate
istributions through the change of variables formula [80]

𝑝(𝐦|𝐏, 𝜃) = 𝑝𝑧((𝑓𝐏
𝜃 )

−1(𝐦))
|

|

|

|

|

|

det

(

𝜕 𝑓𝐏−1
𝜃
𝜕𝐦

)

|

|

|

|

|

|

(6)

where, the cNF is an invertible neural network1 𝑓𝐏
𝜃 ∶ 𝐳 → 𝐦,

here latent variable 𝐳 is assumed to exhibit a tractable probability
istribution (e.g., unit-Gaussian) enabling exact likelihood evaluation.
n this notation, it is implied that the inverse (𝑓𝐏

𝜃 )
−1 ∶ 𝐦 → 𝐳 is known

nd parameterized by the same tunable parameters 𝜃 used to describe
he forward mapping. Note that both the forward and inverse maps
re conditioned on the specified value of the properties of interest 𝐏,
hich are allowed to vary within the prior [80]. Through this mapping,

we gain the ability to reason with the complex conditional distribution
𝑝(𝐦|𝐏) in two ways. (1) We can evaluate the likelihood of a point in
he microstructure space for a specified P by passing values of m and

through Eq. (6) [35,81]. (2) We can generate samples from 𝑝(𝐦|𝐏)
by sampling z from the unit Gaussian and passing it through 𝑓𝐏

𝜃 along
with the specified P. This is the property that allows the cNF to perform
generation (i.e., the ability to propose novel designs) [80].

The use of an invertible neural network architecture is paramount
s the mapping can be learned in one direction, and its inverse imme-
iately obtained for free. Furthermore, we are able to train the model
ia a maximum likelihood loss expressed as [80]

𝑚𝑙 = E
[ 1
2
‖(𝑓𝐏

𝜃 )
−1(𝐦)‖22 − log |𝐉|

]

(7)

where, 𝐉 = det ( 𝜕(𝑓
𝐏
𝜃 )

−1

𝜕𝐦 ). The use of this loss function results in a regu-
arized objective which resists over-fitting [35]. It should be noted that

the computation of log |𝐉| is non-trivial and potentially computationally
expensive. There exists a large body of work on formulating invertible
architectures that allow for easy computation of this term [35,81,82].
Our choices for model architecture are outlined in Appendix A.

In data scarce applications, training via Eq. (7) poses a significant
hallenge, as only a limited number of paired values of m and P might
e available. In the present application, the situation is even more
ire, as the candidate pool only contains microstructural information

without any property information. With the goal of utilizing cNFs
on smaller datasets, recent works have addressed this challenge by
first training a surrogate forward model on a small dataset and then
sing that surrogate to generate a larger synthetic dataset, suitable for

training the cNF [2,83,84]. These works have shown empirically that
he dataset size required for calibrating the forward model is less than
hat required to calibrate an inverse model. Furthermore, they suggest
hat this substitution leads to a negligible performance loss in the final
NF — an observation we will evaluate critically in our work.

3. Proposed framework

In this section, we formally present our proposed framework. Sim-
ilar to all active learning frameworks, the goal is to minimize data
equirements by only simulating points of high informational value.

1 Prior efforts have expressed cNFs as 𝐦 = 𝑓𝜃(𝐳,𝐏), and the corresponding
inverse as 𝐳 = 𝑓−1

𝜃 (𝐦,𝐏). We find this notation misleading. Since both
these functions take in P, they are not technically inverses of each other.
Furthermore, in practice P behaves more like a parameter of the network than
an input. Therefore, we have chosen to write the conditioning variable P as a

superscript rather than an input.
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However, unlike traditional active learning efforts, our final goal is not
to just learn a surrogate forward model, but also to simultaneously con-
struct a model which learns a sufficiently accurate probabilistic inverse
mapping suitable for materials design efforts. As already mentioned,
this poses a significant challenge because the execution of traditional
ctive learning algorithms becomes intractable when attempting to
earn inverse mappings due to their inherently ill-posed nature [48].

In an effort to overcome this challenge, we propose a modified active
learning framework that employs suitable metrics on both the forward
and inverse mappings. Specifically, we propose to combine a selection
riteria on the forward model along with a stopping criteria on the

inverse model. The proposed framework broadly follows the five step
process depicted in Fig. 1 in each iteration of the active learning
oop: (i) Forward model calibration, (ii) Synthetic dataset creation, (iii)

Inverse model calibration, (iv) Stopping criterion check, and (v) Data
cquisition using a selection criterion.

In Step 1, we calibrate the forward MOGP as described in Sec-
tion 2.2.2. To perform this calibration, we use a dataset of ground-truth
observations (for the present problem, this is obtained from simulations
erformed using crystal plasticity models). This dataset will be denoted
s ∗ = {𝐦𝑜, 𝑔∗(𝐦𝑜)}𝐺𝑜=0, where 𝑔∗ represents the true forward model,
nd the microstructures 𝐦𝑜 are a subset of the candidate pool (the
ubset for which the crystal plasticity model has been evaluated)  =
𝐦𝑖}𝑀𝑖=0 established before the start of the active learning loops. Any
ew ground-truth data acquired in the active learning loops (Step 5)
ill be continuously added to the dataset ∗. The main goal of the

active learning algorithm is to keep the size of ∗ small as the ground-
ruth data generation is presumed to be computationally expensive. In

order to ensure there is data to calibrate the MOGP in the first active
learning iteration, we initialize ∗ with a small number of ground-truth
observations. We found our algorithm to be effective with as few as 5
ground-truth observations for the initial set.

As mentioned in the previous section, training a cNF via Eq. (7)
equires a large dataset. Clearly, it would be infeasible to train the cNF
sing the limited available ground-truth data (recall that our goal is to

keep this dataset as small as possible). In recent work [2], this hurdle
as mitigated by exploiting the ability of MOGPs to produce a large

synthetic dataset at low computational cost which approximates the
ground-truth forward data. The impact of utilizing this approximation

ill be investigated in later sections. We expect that the accuracy of
uch a synthetically generated training dataset for the cNF model would

improve as more ground-truth data is added. In Step 2, we produce the
synthetic data set  needed to train the cNF model (i.e., the inverse
map), while accounting for the uncertainty in the MOGP predictions.
In our proposed framework, we accomplish this task by sampling
multiple data points from the posterior prediction of properties for each

icrostructure in the candidate pool . The synthetically produced
dataset  can then be expressed as

 = {𝐦𝑠%𝑀 ,𝐏𝑠}
(𝑀∗𝑆)−1
𝑠=0 (8)

where, 𝐏𝑠 is a sample from 𝑔(𝐦𝑠%𝑀 ) ≈ 𝑝(𝐏|𝐦𝑠%𝑀 ), 𝑆 is the number
of samples drawn from the MOGP prediction of property correspond-
ing to each microstructure, and % is the modulo operator. Since the
computational cost of building this synthetic dataset is quite low, we
used a relatively high value of 𝑆 = 100 in this work. In addition to
constructing the synthetic dataset in Step 2, we also store the associated
uncertainties produced by the GP in the covariance matrices Σ𝑖 for
every 𝐦𝑖 from the candidate pool , since this will be required later
in Step 5.

Next, in Step 3, we calibrate the cNF 𝑓𝐏
𝜃 using the synthetic dataset

 using the process described in Section 2.3. Step 4 checks if the
active learning process should continue using a stopping criteria, which
will be defined in the next section. Finally, if the stopping criteria
is not met, Step 5 acquires a new data point from the physics-based
crystal plasticity model selected via the maximum variance criteria

2.2.3. The new observation is then added to ∗.
described in Section

5 
Once the active learning process has terminated, the results will include
both a calibrated MOGP (i.e., forward map) and a calibrated cNF 𝑓𝐏

𝜃
(i.e., inverse map), which can be used in downstream design tasks.

It is emphasized here that the proposed active learning framework
is designed to be highly data efficient by simultaneously training both
the forward and inverse maps in each active learning iteration. A
second distinctive feature of our proposed framework lies in the use
of the MOGP to produce the dataset needed to train the cNF. This
is critical because the synthetic dataset  can be made arbitrarily
arge by increasing the number of structures in the candidate pool, ,
r increasing the number of samples taken from the posterior of the
OGP.

3.1. Identifying a stopping criterion

Of the four requirements for active learning (candidate pool, ground
truth model, selection criteria, and stopping criteria), we have yet to
identify a suitable stopping criteria. The goal of a stopping criteria
is to identify when the active learning process is no longer yielding
new or valuable information. Since our goal is materials design, the
stopping criteria should be defined on the inverse model. In other
words, it should indicate when our ability to perform materials design
has converged. Here we propose a novel stopping criteria suitable for
the active learning of cNFs.

The key property of cNFs we will exploit to define a stopping criteria
s their ability to perform direct likelihood computations. Given a cNF
hat may or may not be well calibrated, we can pass a validation
ataset of ground-truth observations  = {𝐦𝑎,𝐏𝑎}𝑉𝑎=0 through Eq. (6).
n establishing the validation set  , we have selected microstructures

distinct from those in the candidate pool . In this work, we created a
validation dataset  using 𝑉 = 50 microstructures. Assuming indepen-
dence between the data points, we can compute the likelihood of the
validation set, given the model parameters 𝜃, as

𝑝(|𝜃) =
𝐴
∏

𝑛=0
𝑝(𝐦𝑎|𝐏𝑎, 𝜃) (9)

As we update the parameters 𝜃 within the active learning loops, we
expect the likelihood of the validation dataset to increase, indicating
that we are more closely approximating the true distribution 𝑝(𝐦|𝐏).2
Therefore, we define our stopping criteria to track the value of the
(log-)likelihood to signal when it ceases to improve with continued
active learning iterations. In our work, we have employed the following
stopping criterion:

1
𝐾

𝐼
∑

𝑘=𝐼−𝐾+1
|𝑝(|𝜃𝑘) − 𝑝(|𝜃𝑘−1)| < 𝜙 (10)

where 𝜃𝑘 denotes the parameters associated with active learning it-
ration 𝑘, 𝐼 denotes the total number of completed active learning
terations, and 𝐾 is a hyperparameter denoting the number of steps we
ish to average over. Specifically, we employed 𝐾 = 5, and 𝜙 = 0.001

n this work.

4. Results

4.1. Active learning performance

In order to evaluate critically the efficacy of our proposed active
earning approach, we built and compared the performances of three

different cNFs. The first cNF, referred as cNF Full, is trained on a
dataset in which the entire pool of 54,480 textures were simulated with
the ground truth crystal plasticity model. The second, referred as cNF
Random, is trained on randomly selected subsets of this same dataset.

2 As is typical for numerical stability we work with the log of this likelihood
in practice.
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Fig. 1. A schematic of the proposed active learning framework. Here we update both the forward and inverse maps within each active learning iteration.
Fig. 2. Comparison of the performance of the three cNFs produced in this work — cNF Full, cNF Random, and cNF Active. The likelihood values for the test set are plotted. The
likelihood values for the three cNF models at the stopping point are −3.5 for cNF Random, −4.8 for cNF Active, and −5.0 for cNF Full.
The third, referred as cNF Active, is trained using the active learning
approach developed in this work. cNF Full establishes the lower bound
for the fidelity of the other cNFs learned using the different learning
frameworks. In other words, as the number of observations increases,
the fidelity of the different learning frameworks should converge to
the performance of cNF Full. Our objective is therefore to approach
this lower bound as quickly as possible, i.e., with the fewest number of
observations. Conversely, cNF Random denotes a threshold trajectory
past which an active learning framework provides no additional value
over purely random selection. As such, the efficacy of an active learning
framework can be readily assessed by examining how it outperforms
random selection. In order to ensure a fair comparison, the cNF Random
results presented in this work are shown after averaging over 50
different initializations. Furthermore, we compute and compare the
likelihood of the different models on the test set (20,000 ground truth
observations), which indicates how probable the learned approximation
of 𝑝(𝐦|𝐏) by each model is for the given ground truth test set. Therefore,
the likelihood provides a comparison of the accuracy of the trained
6 
inverse models after each active learning iteration, and thereby allows
us to critically evaluate the efficacy of the active learning algorithm.

As shown in Fig. 2, active learning provides significant advantage
in both low data (<900 observations) and high data (> 900 observa-
tions) regimes. In the low data regime, we see that active learning
dramatically outperforms random sampling, as expected. With so few
observations, each observation has a significant impact on the overall
performance of the model. Active learning therefore offers tremendous
benefits in this regime. Eventually, after a sufficient number of obser-
vations have been obtained, the random sampling performance begins
to catch up to the active learning strategy. In the present example, this
occurs at around 900 observations with the stopping point occurring
at 1076 observations. Although the performance difference between
the active and random strategies appears relatively small in this high
data region, it is notable that the loss function used, the marginal
log-likelihood, is a logarithmic measure of accuracy. Therefore the
performance difference between the Random and Active models is still
significant despite their visual convergence. Importantly, we note that
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at the stopping point cNF Random has failed to achieve a suitable level
of accuracy to be useful for downstream design tasks. A more detailed
omparison of the three models accuracy at the stopping point can

be seen in Appendix B. Furthermore, we observe that the random
selection approach does not reach comparable performance relative to
he active learning strategy at the stopping point until approximately
9,000 observations (This convergence can be see in Appendix C).

In the active learning approach, the stopping criterion was attained
after 1,076 observations (c.f. to Fig. 2). Therefore, given our choice
of stopping criteria, the proposed active learning approach needed
approximately 14 to 18 times fewer observations than random sampling
to achieve roughly the same model accuracy. However, it is clear from
Fig. 2, that the realized level of data savings is a function of the
topping criterion. In other words, if we were to stop much earlier
and accept a significant drop in accuracy in favor of a lower data
udget) we would observe that the difference between the Random
nd Active approaches would be less pronounced. Minimally, for any
topping criteria, we see that the active learning approach outperforms
andom sampling by 2 times,3 and conversely we see a 20 times data

savings at their maximal difference. The ‘‘stalling’’ behavior of the
random approach (seen beyond 900 observations) is likely because
the remaining observations are not statistically diverse from the large
number of preexisting data points the model has already observed.
Therefore, intelligently identifying the remaining data points which still
offer novel information is what allows the active strategy to much more
rapidly converge to peak performance.

Importantly, we observe that the active learning approach does
indeed converge to the performance of the cNF trained on the full
dataset. We also see that the convergence, for this problem, is rapid and
generally smooth. Combined these observations empirically suggest (i)
the design pattern of training a cNF using a synthetic dataset generated
by an MOGP is effective, and results in little loss in accuracy when
compared to using ground truth data directly (Additionally shown in
Appendix B), and (ii) the active learning process is stable, in that we
can expect the addition of new data to result in a more accurate model.

hese findings are critical in enabling the practical use of cNF’s across
a wider array of problems in data scarce applications.

4.2. Model accuracy

Now that we have shown that our active learning strategy can
ffectively learn a cNF on a limited dataset, we turn our attention to
valuating its accuracy. The nMLL in the previous section serves as an
deal measure of accuracy as it takes into account the stochastic nature
f the cNF. However, it fails to provide any intuitive sense of how
ell the model is performing. Therefore, we investigate model accuracy
ia two other metrics. First, we will use a ‘‘round trip’’ error which

will enable us to quantify performance using familiar visualizations
and metrics. Second, to better understand the learned posteriors, we
will take select properties from the test set (𝐏1, 𝐏2, 𝐏3) and plot their
osterior distributions 𝑝(𝐦|𝐏𝑖) along with the ground truth values of 𝐦.

The round trip accuracy starts with a target property value 𝐏∗,
hen utilizes the Active cNF 𝑓 (⋅) to predict a posterior distribution
f microstructures 𝑝(𝐦∗

|𝐏∗) given the design target. This distribution
is then sampled, and the samples are evaluated through the forward

odel 𝑔(⋅) to obtain 𝑝(𝐏|𝐦∗). We then compare the expectation of this
distribution to the target property value 𝐏∗. The round trip accuracy
s needed because bijectivity is not guaranteed in inverse problems.
here may be multiple solutions 𝐦∗ which lead to a single 𝐏∗. In

this way, the error between the known m from the test set and the
olution from the cNF 𝐦∗ may be vastly different even though they
ield the same 𝐏∗. The round trip error circumvents this issue by

3 Here we ignore the starting point where both models are trained on the
ame initial observations, and therefore have the same accuracy.
7 
checking if the proposed solutions in the microstructure space have the
esired properties which were initially targeted. Thus, this round trip

incorporates the degeneracy of the forward model into the error metric.
The round trip error also has the added benefit of benchmarking the
entire framework, both forward and inverse model, at the same time.
Furthermore, the round trip error can be visualized for the entire test
set at once, giving us a holistic sense of the model performance over
a large number of samples. We compute the round trip error for all
20,000 data points in the test set. Fig. 3 shows the aggregated results
for the round trip errors for the textures present in the train and the test
set. The overall errors are within respectable margins. The parity plots
in Fig. 3 show 𝐏∗ versus the round trip prediction, and have a strong
linear trend. It is important to point out that the parity plot shows all
the values for the 18 normalized yield stresses (denoted by 𝜎𝑜𝑛𝑜𝑟𝑚) for
ach of the textures of present in the train and test set accordingly in
 single plot to make it easy to visualize the performance across all the
ormalized stresses. This is done similarly for the lateral plastic strain
ncrements where all the 36 lateral plastic strain increments (denoted
y 𝛿𝑖𝑛𝑐) for each texture of present in the train and test set are shown
n a single plot. Lastly, the CDF plot shows that 95 percent of predicted
ata exhibits a % Error less than 4.2 percent.

In an effort to evaluate the prediction accuracy of specific points,
results from three selected target properties, 𝐏1, 𝐏2, and 𝐏3, are taken
from the test set. These test cases were chosen because, in their totality,
they form a diverse set of points with respect to the many of the
measures used in this work, and therefore should serve well to evaluate
critically the general performance of the model. The test cases differ in
three notable ways. Firstly, they differ in the input space, with texture
ranging from randomly textured (𝐏1) to highly textured (𝐏2 and 𝐏3)
(see Fig. 4). Consequentially, they also span the output property space
ranging from nearly isotropic (𝐏1) to highly anisotropic (𝐏2 and 𝐏3).
inally, they span the space in terms of % Error ranging from accurate
oints in the test set (𝐏1, 𝐏2, < 1% error) to the least accurate (𝐏3 ∼
0% error). cNF Active was used to determine the posteriors 𝑝(𝐦|𝐏𝑖)
or each property.

The results from these case studies are shown in Fig. 4. It is clear
that the model has produced reasonable results compared to known
values of 𝐦 for the chosen values of 𝐏. For the isotropic design target,
𝐏1, we see a nearly random texture was predicted (shown in the
ole figure in Fig. 4), and for the highly anisotropic samples we see

corresponding highly textured predictions. Looking more closely at the
osteriors, we see good agreement with the ground truth values from
he test set. All of the ground truth values are within the predicted
osteriors, and are typically near high density regions. In addition,
osteriors from least textured to most (top to bottom) show a clear
rend in the width of the posteriors. For the nearly randomly textured
oint, 𝐏1, the posteriors are very tight (±0.02) while highly textured
amples exhibit wider distributions. For 𝐏3, the posteriors have a width
f ±0.2. Comparing the two highly textured data points 𝐏2 and 𝐏3, we
ee that despite similar shaped posteriors, the posterior estimates for
2 have their peaks align better with the ground truth values than 𝐏3.
verall, these posteriors corroborate the excellent model performance

hown via the other metrics, and further elucidate how the model
erformance varies depending on which textures are being predicted.

5. Conclusions

Active learning has the attractive property of significantly reducing
odel training data requirements, enabling the production of optimal

xperimental designs. Coupling such active training procedures with
enerative modeling serves as an promising avenue for solving inverse
esign problems in costly and data-scarce regimes. In this work, we

have proposed a framework which actively learns a cNF to solve inverse
material design problems. We find that our approach is able to reduce
the amount of data required to train cNFs by 14 to 18 times, while

maintaining a high level of accuracy. In addition to data efficiency,
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Fig. 3. The round trip performance is evaluated. Parity plots are shown for both the train and test set. The 54 anisotropy parameters are grouped into normalized yield stresses
(𝜎𝑜

𝑛𝑜𝑟𝑚) and strain increments (𝛿𝑖𝑛𝑐 ) and are shown across two parity plots. Due to the high number of points, they are colored based on their density to better show arrangement.
The cumulative distribution function (CDF) plot on the right shows that for the test set, 95% of the data exhibits less than 4.2% Error𝑅𝑇 . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The posterior distributions of 𝐦 are plotted for selected properties 𝐏1, 𝐏2, and 𝐏3. For better visualization, we exploit the natural ordering of the GSH representation of
𝐦 and plot only the first three GSH coefficients (𝐶1,1

4 , 𝐶2,1
4 , 𝐶3,1

4 ) as they form the first and most dominate truncation level of the GSH expansion used in this work. The textures
are also visualized as pole figures on the left where higher values signify more dominate orientations. Each row shows the pole figures (corresponding to the MAP values of the
posterior) and the posterior distributions for each point. The bold vertical lines are the ground truth values of 𝐦.

Acta Materialia 284 (2025) 120537 
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we also demonstrated that our framework returns accurate inverse
solutions, as well as being able to quantify the various uncertainties
involved.

It is important to note that while our framework is data efficient, it
s only data efficient in the requirement of labeled input/output data
airs. Depending on the size of the cNF, it may still be necessary to have

a large number of unlabeled data points in the input space. For many
scientific and engineering problems, such as the one presented here,
obtaining unlabeled data points is trivial. In our case, the GSH space
is well defined, and it is easy to generate a large numbers of samples.
However, this is not generally true. For example, problems that involve
difficult to obtain data such as micrographs [12], may not be able to
produce enough samples to train the cNF. For these problems, new
methods are emerging in microstructure generation which may provide
a viable avenue to execute this type of framework [36–38,85], and will
be the focus of future work. Currently, the concepts in this paper are
generally applicable only when large amounts of unlabeled inputs are
available, but obtaining their corresponding outputs is expensive.
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Appendix A. Model architectures/training

A.1. Gaussian process regression

For the forward model we used a multi-output GPR with correlated
outputs using the linear method of coregionilaztion. We implemented
this GPR with the package GPyTorch [86] as it utilizes PyTorch as its
ack-end and enables convenient gradient calculations of the forward
odel. The kernel used in the GPR was the common radial basis

unction (RBF) which was additively combined with a white noise
ernel. Each input dimension possessed independent length scale terms,
hich were obtained by maximum likelihood estimation [26]. The
verage training time for one active learning iteration was 1-2 min.
9 
A.2. Normalizing flow

Our inverse model is a cNF which is composed of RealNVP coupling
blocks [81]. We created a network consisting of 20 invertible blocks.

ithin each block we utilized a 2 layer fully connected neural network
ith 128 neurons in each layer with sigmoid activation’s. Our imple-
entation is based on the FrEIA package [87] which provides ready

to use invertible neural network modules in PyTorch. We trained for
70 epochs using the Adam optimizer with a learning rate of .01, and a
batch size of 200. The training pool consisted of 54,480 samples. The
experiments were performed on a Linux server running RHEL 8 with
16 Xeon cores and 4x Nvidia P100 GPUs. The average training time for
one active learning iteration was 10–12 min.

Appendix B. Comparisons of model performance

Here we show the relative performance of cNF Active, Random,
and Full at the stopping point of 1076 observations. Fig. B.5 shows
he error metrics for each model. Clearly we can see that despite the
imilar likelihood values of each model at the stopping point (−4.8

for cNF Active, −3.5 for cNF Random, and −5.0 for cNF Full), there
still exists a substantial difference between the predictive performance
of each model — particularly for cNF Random. With respect to their
cumulative distribution functions we can see that the predictions of
cNF Random are far less accurate than cNF Active. The percent error
which encompasses 95% of the data is 32% for cNF Random relative to
4.2% for cNF Active. Clearly, this large increase in error would likely
make the predictions from cNF Random unusable for any downstream
tasks. Furthermore, we additionally show the posterior of 𝐶3,1

4 for the
point of interest 𝑃2 in Fig. B.5. Here we immediately see a shift in
the mean of the posterior away from the known ground truth value.
This corroborates the reduction in performance seen in the cumulative
distribution function. Additionally, we also observe a difference in the

idths of the predicted posteriors. The posterior of cNF full is the
ightest with its mean centered at the known ground truth value form
he test set. The posterior of cNF Active is located in alignment with
he posterior of cNF Full, but is slightly wider. This is due to the
dditional uncertainty introduced via the approximation of the forward
rocess via a Gaussian Process. Overall, the increase in uncertainty
s negligible. In addition to having its mean no longer located near
he known ground truth value, the posterior of cNF Random is very
ide — nearly encompassing half of the entire acceptable range of

he value of 𝐶3,1
4 . This indicates that cNF Random is highly uncertain

n its prediction, and this widened posterior is consistently observed
cross many data points in the test set. Clearly, this large difference
n performance further substantiates the claim that the Active learning
ramework has calibrated a performant model with significantly less
ata than would be required with a random selection process.

Appendix C. cNF random — high data regime convergence

Here Fig. C.6 shows the convergence of the cNF Random to the
erformance of cNF Active for the high data regime. To better illustrate
he high data regime convergence we have elected to plot the mean
ound trip percent error, %𝐸 𝑟𝑟𝑜𝑟𝑅𝑇 , for each model rather than the

marginal log likelihood used in Fig. 2. This is because the %𝐸 𝑟𝑟𝑜𝑟𝑅𝑇 is
no longer a logarithmic measure of accuracy (where the marginal log
ikelihood is), and therefore produces a more informative visualization
n the high data region. We would like to note that the convergence
oint is roughly the same for both measures of performance. Inspecting

Fig. C.6 we can see that with respect to %𝐸 𝑟𝑟𝑜𝑟𝑅𝑇 cNF Random grad-
ually approaches the performance of cNF Active (3.348), and that the
wo curves meet around 19,000 observations. Generally, we see that the
erformance of the two models begins to be comparable around 14,000

observations despite not matching exactly. The slow convergence ex-
ibited here showcases the claim that the active learning framework is
4 to 18 times more data efficient than the random selection process.
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Fig. B.5. Comparison of the accuracy of the three cNFs (cNF Active, cNF Random, and cNF Full) at the stopping point of 1076 observations. The left plot shows the CDF of the
error for each model. Here we can see the percent error required to encompass 95 Percent of the data shifts from 4.2%, for cNF Active, to 32% for cNF Random. The right plot
hows the predicted posterior densities for the value of 𝐶3,1

4 for the point of interest 𝑃2. The ground truth value from the test set is shown via the dotted vertical line.
Fig. C.6. The convergence of cNF Random to the performance of cNF Active at the stopping criteria. Please note performance on this plot with respect to the average %𝐸 𝑟𝑟𝑜𝑟𝑅𝑇 ,
ot the log-likelihood as in Fig. 2. We observe a roughly linear improvement in performance with increasing observations, and see cNF Random converge to cNF active (stopping

point) around 19,000 observations. The performance of cNF random was evaluated at 1000 observation increments past 10,000 observations to limit computational cost.
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