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ABSTRACT
Space-filling designs are commonly used in computer experiments to fill the space of inputs so that the
input–output relationship can be accurately estimated. However, in certain applications such as inverse
design or feature-based modeling, the aim is to fill the response or feature space. In this article, we propose
a new experimental design framework that aims to sequentially fill the space of the outputs (responses or
features). Several examples are given to show the advantages of the proposed method over the traditional
input space-filling designs.
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1. Introduction

Computer experiments have become an indispensable tool in
science and engineering (Santner, Williams, and Notz 2019),
such as in rocket engine design (Mak et al. 2018), biomedical
engineering (Striegel et al. 2022), and materials design (Iyer et al.
2022). However, with the increasing complexity and resolution
of the simulations, the running time of computer experiments
is still far from negligible even with the current computational
power. Thus, experimental designs that help to gather maximum
information with minimum computational budget play a crucial
role in computer experiments.

Space-filling designs are widely used as experimental designs
for computer experiments (Joseph 2016). Intuitively speaking, a
space-filling design tries to place the design points to “fill” the
input space well in the hope that the estimation and prediction
of the statistical model based on the experimental data would be
accurate. An attractive feature of space-filling designs is that they
are robust to modeling assumptions. Thus, they can be efficiently
used for fitting a wide variety of models.

In this article, we are interested in experimental designs that
produce response values to fill the output spaces. We refer to
them as output space-filling designs (OSFD). Unlike traditional
space-filling design (hereafter referred to as input space-filling
design (ISFD)), OSFD aims to cover the output space well.
Generating OSFD may seem like an unusual objective because
filling the output space does not guarantee a precise estima-
tion of the input–output relationship. On the other hand, the
benefits of filling the input spaces are well known. Johnson,
Moore, and Ylvisaker (1990) showed that a maximin distance
design in the input space would be asymptotically D-optimal for
fitting a Gaussian process model and a minimax design would
be asymptotically G-optimal (as the correlations tend to zero).
However, as noted by Lu and Anderson-Cook (2021), there are
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several applications in which filling the output space would be
beneficial.

In inverse design problems, the aim is to find input config-
urations that will achieve a specified set of outputs. Consider,
for the example, the design of acoustic metasurfaces to achieve
given acoustic properties such as the amplitude and phase of
transmitted and reflected waves (Krishna et al. 2022). The aim is
to create several acoustic metasurfaces offline using 3D printing,
store them, and pick the best one for a given set of acoustic prop-
erties. In other words, the aim is to create a “lookup-table” of
acoustic metasurface geometries and acoustic properties, where
the investigator can quickly identify the geometry based on the
set of acoustic properties. This approach will be successful if the
acoustic properties in the lookup table is dense, that is, the space
of acoustic properties should not have large gaps. Thus, the aim
here is to identify the set of geometries that will fill the output
space of acoustic properties.

As a second application, consider statistical and machine
learning problems involving feature-based modeling. The first
step in such problems is to extract “features” from the input
space. The modeling is then done between the response and
features. In this scenario, the feature-output relationship can be
accurately estimated if the points in the feature space is space-
filling. Thus, the aim is to identify a set of points in the input
space so that the points in the feature space are space-filling.
As a real example, consider the crystal structure prediction
problem described in Krishna et al. (2023). The input space
is the Cartesian coordinates of the atomic configurations of a
single crystal structure, and the output is the potential energy
computed using Density Functional Theory (DFT). However,
since the potential energy is invariant to translational, rotational,
and permutational operations of the atoms, the Cartesian coor-
dinate system is not suitable for model building. Therefore, the
Cartesian coordinates are converted to a set of features using
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AGNI (Adaptive, Generalizable and Neighborhood Informed)
fingerprinting (Batra et al. 2019). AGNI fingerprinting is fast
compared to DFT computations, but has nonnegligible cost
which makes developing space-filling points in the feature space
a difficult task.

It is much more challenging to generate space-filling points
in the output (response, feature, etc.) space as compared to the
input space. ISFD is generated in a known experimental region,
usually a hypercube, whereas OSFD aims to fill an unknown
region with unknown boundaries. A naive approach of creating
a large set of candidate points in the output space to choose
a set of space-filling points would not be feasible in either of
the two scenarios: (a) high cost of evaluating the input–output
function and (b) the region in the input space to cover the output
space is small relative to the whole input space. This suggests
that a sequential design is the only viable option, as we can
learn the “active regions” in the input space gradually, and fill-in
the output space with as few function evaluations as possible.
Developing such a sequential design is the main aim of this
article.

Sequential designs, also known as active learning, is widely
used in statistics and machine learning for dealing with
expensive black-box functions. Most of these are “model-
based” designs and use Gaussian process modeling extensively
(Gramacy 2020, chap. 6). However, Gaussian process modeling
has a high cost for training, which can be appreciable in several
applications. Therefore, we need new sequential design methods
that is fast and efficient to fill-in the output spaces.

The article is outlined as follows. Section 2 begins by intro-
ducing some notations used in this article and then reviews
the traditional ISFDs and related works on OSFDs. Section 3
presents the definition of minimax output space-filling design
and proposes efficient algorithms to generate such designs. Sec-
tion 4 demonstrates the performance of the proposed algorithms
using three simulation studies. Section 5 illustrates the appli-
cation of OSFD on inverse design and feature-based modeling.
Section 6 concludes the article with some final remarks.

2. Background

Denote the input space by X ⊆ R
p, output space by Y ⊆

R
q, and let the mapping from input space to output space be

f : X → Y . Typically f is a black-box computer code that
is expensive to evaluate. Denote a design of size n ∈ N by
Dn = {xi ∈ X , i = 1, . . . , n}. The corresponding points in the
output space is denoted byMn = f (Dn) = {yi : yi = f (xi), xi ∈
Dn, i = 1, . . . , n}. Our goal is to find a design Dn such that Mn
is space-filling in Y . Before we formally define what is “space-
filling” in Y , we first review the traditional input space-filling
design (ISFD).

2.1. Space-Filling Design

From a geometric point of view, there are two commonly used
space-filling design schemes: maximin distance design and min-
imax distance design (Johnson, Moore, and Ylvisaker 1990).
Let dx be a metric on R

p. Then the maximin distance design

maximizes the following criterion:
φMm(Dn) = min

xi,xj∈Dn;i �=j
dx(xi, xj). (1)

That is, it places design points such that the minimum distance
between any two points is as large as possible. Minimax distance
design, on the other hand, tries to minimize the maximum
distance from all the points x ∈ X to their closest neighbor in
Dn, which is obtained by minimizing the following criterion:

φmM(Dn) = max
x∈X

min
xi∈Dn

dx(x, xi). (2)

This criterion is also known as the fill distance (Fasshauer 2007),
which will be used throughout this article. Maximin and mini-
max distance designs may not have good projection properties
and therefore, they are combined with Latin hypercube designs
(LHD) to improve their one-dimensional projections (Morris
and Mitchell 1995). We refer the readers to Joseph (2016) for
a detailed review of the vast literature on ISFD. These designs
allow for a careful exploration of the experimental region by
making sure that no part of the input space is left out. This
property makes these designs model-free and therefore, they
enable the experimenter to fit a wide variety of statistical and
machine learning models to the data and make predictions.

2.2. Related Works

The literature on output space-filling design (OSFD) is scarce.
Rhee, Zhou, and Qiu (2017) seems to be the first work that dis-
cussed about space-filling designs for output spaces. However,
their goal is more closely aligned with uniform sampling on
a manifold rather than generating an experimental design. To
generate n uniform points in the output space, they start with
n random samples in the input space and then improve them
through weighting and resampling. However, in the context of
design of experiments, augmentation of the design points makes
more sense than resampling. In this article, we will develop a
sequential design strategy that adds points one-at-a-time to the
existing set of points, thereby obtaining a space-filling design
with minimum number of function evaluations. Nonuniformity
of the points in the output space is not a concern at all for us as
long as the points can fill-in the output space.

Lu and Anderson-Cook (2021) recently proposed a design
strategy that simultaneously achieve space-fillingness in both
input and output spaces using Pareto front optimization. They
assume that the input–output relationship is known and cheap
to evaluate, which is quite different from the problem we tackle
in this article. Lu and Anderson-Cook (2021) also proposed
a two-stage approach to deal with the unknown input–output
relationship by first using an ISFD to estimate the relationship
and then using the estimated model to perform the Pareto
front optimization. Their second stage design can suffer if the
estimated model is wrong from the first stage. In contrast, we
develop a fully sequential model-robust design strategy to con-
struct the OSFD.

Our work is motivated by the two applications briefly dis-
cussed in Section 1: inverse design of acoustic metasurfaces
(Krishna et al. 2022) and crystal structure prediction (Krishna
et al. 2023). The authors develop design strategies specific to
those two applications. In contrast, the design strategy devel-
oped here is more general, efficient, and broadly applicable.
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Figure 1. Design points and outputs for the inverse radius function in (4) with ε = 0.1. Input space-filling design (left); output space-filling design by OSFD-greedy
algorithm (middle); and the exact solution of the minimax OSFD (right). Design size is 50. The output space is enclosed by the dashed line. The initial design for the
OSFD-greedy algorithm is a random LHD of size 5.

3. Output Space-Filling Design

3.1. Mathematical Formulation

Similar to the traditional minimax distance design, here we
quantify the space-fillingness of the design output using the
minimax distance. Therefore, our objective is to minimize

φmM(Mn) = max
y∈Y

inf
yi∈f (Dn)

dy(y, yi), (3)

with respect to Dn, where dy is a metric defined on R
q. We use

Euclidean distance as the metric unless otherwise mentioned.
We call the minimizer of the foregoing objective function a min-
imax output space-filling design. The only difference between
(2) and (3) is the domain to which we apply the minimax
distance criterion. However, due to the unknown mapping f and
unknown output space Y in (3), obtaining a high-quality space-
filling design in the output space is almost impossible and the
only hope is to develop numerical algorithms that can at least
approximate this idealized aim as close as possible.

For illustration, consider a simple “inverse-radius” function
f ir that maps [0, 1]2 to a subset in R

2:

f ir(x1, x2) =
⎛
⎜⎝ 1√

x2
1 + x2

2 + ε2
, arctan

x2
x1

⎞
⎟⎠ . (4)

This function has large gradient near the origin and is flat
elsewhere, with ε controlling the variation. As shown in the left

panels in Figure 1, if we use the traditional minimax design,
the output points will congregate at the left side of the output
space and leave most of Y unexplored. Since f ir is a bijection,
to get the theoretical minimax output space-filling design, we
can first construct a minimax design in output space, which we
denote as M∗

n = arg minMn φmM(Mn), and then map it back
to the input space to obtain D∗

n = f −1
ir (M∗

n). Because the output
space is irregularly shaped, here we use the minimax clustering
with particle swarm optimization (mM-PSO) algorithm of Mak
and Joseph (2018) to generate the minimax points in the region
enclosed by the dashed line on the right panel of Figure 1. In
this case, the output space is covered uniformly and the design
points in the input space exploits the “interesting” region where
the function f ir has large variation. In practice, though, we
have no knowledge of the output space and f ir is a black-box
function that can only be evaluated in the forward direction.
Therefore, this exact optimal design is impossible to attain in
practice. Interestingly, our sequential output space-filling design
algorithm discussed in the next section can find a compromise
between the two aforementioned cases, recovering most part of
the output space while exploring the input space well (see the
middle panels of Figure 1).

3.2. A Sequential Design Algorithm

Our algorithm consists of two steps: (i) find the largest gap in
the output space and (ii) perturb the corresponding input point
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to generate a new design point in the input space. These two
steps will be continued until the largest gap in the output space
is below a specified threshold or when the budget is run out. We
will now describe the two steps in detail.

3.2.1. Gap Identification
Suppose we already have m points in the input and output
spaces: (Dm,Mm). The first step is to identify the largest gap
in the output space. For this purpose, we define the local fill
distance around each point yi as

hi = max
y∈Vout

i

dy(y, yi), (5)

where Vout
i is the Voronoi region around yi given by

Vout
i = {y ∈ Y , dy(y, yi) ≤ dy(y, yj), ∀yj ∈ Mm �= yi}, (6)

for i = 1, . . . , m. Note that hi and Vout
i depend on the current

outputs Mm. For notational compactness, we have dropped
their dependence on Mm as long as it is clear that these quanti-
ties will change as more points are added to the design. It is easy
to see that the fill distance of Mm is

φmM(Mm) = max
i=1:m

hi.

The index of the point corresponding to the largest gap in the
output space is given by

i∗ = arg max
i=1:m

hi. (7)

With the point of largest local fill distance identified, we can per-
turb xi∗ in the input space. However, the evaluation of local fill
distance requires the knowledge of the true Y , which is actually
unknown beforehand. This renders a direct segmentation of the
output space into Voronoi regions (6) not feasible. Therefore,
based on Mm, we first generate a set of points A to approximate
Y as follows.

The approximating point set is comprised of three parts.
The first part A1 is generated by constructing a (p ∧ q +
1)-dimensional simplex by connecting each yi ∈ Mm and
its p ∧ q nearest neighbors Np∧q(yi) = {y(l)

i ∈ Mm :
y(l)

i is the lth nearest neighbor of yi, l = 1, . . . , p ∧ q} and then
finding the centroid:

c = 1
p ∧ q + 1

p∧q∑
l=0

y(l)
i , (8)

where p ∧ q = min(p, q) and y(0) = yi. We also add axial points
so that we can go outside of the convex hull of Mm:

cj =

⎛
⎜⎜⎝ 1.5

p ∧ q
∑
l �=j;

0≤l≤(p∧q)

y(l)
i

⎞
⎟⎟⎠ − 0.5y(j)

i , (9)

where j = 0, 1, . . . , p ∧ q. Note that if the output dimen-
sion q is larger than the input dimension p, the output space
would be a p dimensional manifold in a q dimensional space.
Therefore, it is more natural to consider a simplex of the lower
dimension. Implicit in this argument is the assumption that the

input variables are all active, otherwise, the manifold dimen-
sion can be even lower. The second part A2 is generated by
finding the midpoints between each yi ∈ Mm and its k1-
nearest neighbors Nk1(yi). These points reside on the (extended)
boundaries of the Voronoi cells and have equal distances to the
endpoints. We choose k1 = 2(p ∧ q) by default. The last part
A3 consists of points in p ∧ q-dimensional balls around each
design output. The rational to use p ∧ q-dimensional balls is
similar: if q > p, we should not generate the approximating
points by q-dimensional balls since most of the points would
fall outside the manifold. Instead we extract the tangent spaces
around each design outputs using the simplexes constructed in
the first part and generate uniform points in p-dimensional balls
on the tangent spaces. This procedure is presented as Algorithm
1 in the appendix and illustrated by an example in Figure 2. We
can see that for each output point yi, di = maxa∈Vout

i ∩A dy(a, yi)

is a reasonable approximation of the exact local fill distance
hi = maxa∈Vout

i
dy(a, yi).

3.2.2. Perturbation
As mentioned earlier, we will perturb the input design point
xi∗ , corresponding to yi∗ , the point in the output space with the
largest local fill distance. The only thing we need to decide is
how to perturb the xi∗ . Ideally, we would like to find a new input
point in such a way that the output will minimize the largest gap.
However, this cannot be done optimally because f (·) is expensive
to evaluate. Therefore, we propose to perturb xi∗ to its maximum
permissible level, which will also promote the space-fillingness
in the input space. Thus, we choose the next point as the furthest
point in the Voronoi cell V in

i∗ of xi∗ as shown in Figure 3, where

V in
i = {x ∈ X , dx(x, xi) ≤ dx(x, xj), j �= i}.

The foregoing computation is done as follows. A candidate
set C is first built by uniform samples in a hypercube around xi∗ .
We then find the k2-nearest neighbors Nk2(xi∗) of xi∗ , where we
choose k2 = 2p by default so that there would be two neighbors
on each dimension on average if the {xi}m

i=1 were uniformly
distributed. The set C is then augmented with uniform points in
balls centered at xi∗ and its neighbors Nk2(xi∗). The next design
point xm+1 is chosen as

xm+1 ∈ arg max
x∈Vin

i∗∩C
dx(x, xi∗). (10)

This step and its parameter specification are detailed in Algo-
rithm 3 in the appendix. The whole output space-filling design
algorithm is summarized in Algorithm 5 in the appendix. An
illustration of the OSFD algorithm on the inverse radius func-
tion is shown in the middle panels of Figure 1. We can see that
it does a good job filling the output space.

Now consider the following challenging exponential function
f α

exp : [0, 1]2 → R
3 taken from Rhee, Zhou, and Qiu (2017):

f α
exp(x1, x2) = (

e−αx1+e−αx2 , e−2αx1+e−2αx2 , e−4αx1+e−4αx2
)

.
(11)

The parameter α controls the gradient of f α
exp in the input

space [0, 1]2. When α is large, the gradient is large only in a
very small area near the origin, making the active region difficult
to locate. Consider α = 10 and α = 100. We can see from
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Figure 2. Construction of approximating points A: Red points are the scaled output pointsM10. Dashed lines divide the output region into 10 Voronoi cells, within which
each output point is connected to its furthest approximating point. The star in the last figure is the design output yi∗ with largest local fill distance.

Figure 4 that the proposed algorithm performs well for α =
10 but fails to cover the output space for α = 100. When
α = 100, this function has large variation only in the region
around [0, 0.04]2 (Figure 4: right panel), which means 99.84% of
the input design space will give almost identical responses. It is
therefore almost impossible to find such a small area in the initial
design. Moreover, at the initial stage, the approximation of the
output space is inaccurate because the existing design points are
far from the region [0, 0.04]2. Thus, the algorithm can get stuck
in a local region. In the next section, we propose an improved
algorithm that helps to jump out of the local regions.

3.3. An Improved Algorithm

Bayesian optimization (Garnett 2023) is a popular technique for
the global optimization of expensive black-box functions. The
key idea in Bayesian optimization is to introduce an acquisition
function that includes not only the function value but also
its uncertainty estimate. Expected improvement (EI) criterion
(Jones, Schonlau, and Welch 1998) is one such acquisition func-

tion. The EI criterion encourages the design points to explore the
experimental region while exploiting the function, which aids
in jumping out of local regions and enable the design points
to move toward the global optimum. The EI algorithm uses
Gaussian process (GP) modeling, which automatically gives the
uncertainty estimates alongside predictions. However, as men-
tioned in the introduction, the high training cost of GP models
can become a computational bottleneck.

It is well-known that a minimax design is based on a nearest
neighbor predictor (Joseph 2006). A nearest neighbor predictor
is extremely fast. Its estimation can be done in O(pm log m)

operations and prediction on N points in O(N log m) operations,
which are much smaller than the O(m3p) and O(N2) operations
needed for a GP model. Unfortunately, nearest neighbor predic-
tor is not based on a stochastic model and therefore, it does not
come with uncertainty estimates as in GP modeling. Thus, the
nearest neighbor approach is possible only if we can develop an
uncertainty estimate.

Let h(x) denote the local fill distance in the output space at
an input value x. Thus, given the data h = (h1, . . . , hm)′, for a
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Figure 3. Illustration of the perturbation step. Red points are design points in the
input space. The red star is the design points xi∗ corresponding to the output point
yi∗ with the largest local fill distance. The yellow triangle is the next design point
xm+1 chosen from the candidate set. Uniform candidates are denoted as the gray
points and those candidates generated in the balls around xi∗ and its neighbor are
denoted as gray triangles.

nearest neighbor predictor

E{h(x)|h} = hi for x ∈ V in
i (x).

Motivated by the Brownian random fields (Zhang and Apley
2014), we postulate a variance for the nearest neighbor predictor
to be

V{h(x)|h} = σ 2||x − xi|| for x ∈ V in
i (x).

This has the desirable property that V{h(xi)} = 0 for i =
1, . . . , m and that the variance increases as the prediction point
moves away from the design points, just like the posterior vari-
ance in a Gaussian process model. Assuming normality, we have

h(x)|h ∼ N
(
hi, σ 2||x − xi||

)
for x ∈ V in

i (x). (12)

Thus, the expected improvement acquisition function can be
obtained as

EI(x;Dm) = E [max (0, h(x) − hmax)|h]
= s(x){u(x)�((u(x)) + φ(u(x))} for x ∈ Vin

i (x),
(13)

where hmax = maxi hi, s(x) = √
σ 2‖x − xi‖, u(x) = (h(x) −

hmax)/s(x), φ(·) is the density function of the standard normal
random variable and �(·) is its cumulative distribution func-
tion. An estimate of σ 2 can be obtained by maximizing the leave-
one-out cross-validation likelihood as (Geisser and Eddy 1979):

σ̂ 2 = 1
m

m∑
i=1

(
hi − h(x(1)

i )
)2

‖xi − x(1)
i ‖

, (14)

where x(1)
i = arg minx∈Dm\{xi} ||xi − x||.

As before, we generate a candidate set of points C and obtain
the next design point as

xm+1 = arg max
x∈C

EI(x;Dm). (15)

To promote exploring across the whole input space, the candi-
date set C includes uniform random points in the hypercube
[0, 1]p instead of a local region around xi∗ . The new algorithm is
shown in Algorithm 4 in the appendix. To distinguish this design
from the previous greedy strategy, we will refer to the new design
as OSFD-EI and the previous design as OSFD-greedy.

The 300 points generated using the OSFD-EI algorithm for
the exponential function with α = 100 is shown in Figure 5.
The initial design is random LHD of size 30. We can see that the
new design tends to explore the input space like an ISFD and
is able to jump out of the local regions and fill the output space
reasonably well. On the other hand, the approach in Rhee, Zhou,
and Qiu (2017) required thousands of function evaluations to
get a similar result.

We also tried a GP model instead of the nearest neighbor
(NN) predictor on the exponential function with α = 100.
The GP model was fitted using the R package DiceKriging
(Roustant, Ginsbourger, and Deville 2012) at the default settings.
The fill distance (left) and computational time (right) averaged
over 10 replications are shown in Figure 6 for various values of
n. As expected, the NN predictor makes the algorithm run much
faster than with GP. The fill distance is comparable to that of the
GP model.

4. Simulations

In this section, we investigate the performance of the two
proposed OSFD algorithms. We consider three test functions:
the inverse-radius function f ir (4), the exponential function
f α

exp (11) with different α, and a modified Easom function
(Solteiro Pires et al. 2010):

f p
esm(x) =

p∏
i=1

cos(2πxi) exp
(

−π2(2xi − 1)2

p

)
(16)

with different input dimension p. We will use the fill distance
in the output space to quantify the performance. A two-phase
algorithm adapted from Lu and Anderson-Cook (2021) is also
included for comparison. In the first phase of this algorithm,
we use a random LHD of size n/4 (rounded to the nearest
integer) to build a multivariate GP model. In the second phase,
we predict the responses of 100n uniform random inputs using
this GP model and choose 3n/4 predicted responses based on
maximin criterion. The corresponding input points are chosen
as the remaining 3n/4 points of the n-point design. Clearly,
the performance of this algorithm depends largely on how well
the GP model fits the underlying mapping f in the first phase.
We used DiceKriging (Roustant, Ginsbourger, and Deville
2012) for fitting the GP model and the R packagemaximin (Sun
and Gramacy 2021) for finding the maximin points.

Figure 7 shows the simulation results for the inverse-radius
function. We initialize the OSFD by a random LHD with sample
size n0 = 10 and replicate the simulation 20 times. The solid
line indicates the mean value of the fill distance and the shaded
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Figure 4. Top row: 300 design points generated by the OSFD-greedy algorithm for the exponential function in (11) with α = 10 (left) and α = 100 (right). Bottom row: the
corresponding output points projected to the first two coordinates. The intial design is generated by random LHD of size 30. The active region in the input space is shown
as a box using dashed lines. The true output space is also shown using dashed lines.

Figure 5. Design points and outputs for f 100
exp generated by OSFD-EI.

band represent the 90% confidence intervals. For each n, we
also generate an ISFD using random LHD and compute its fill
distance in the output space. We can see that both OSFD-greedy
and OSFD-EI algorithms outperform the ISFD and the two-

phase algorithm. In fact, both the proposed algorithms quickly
attain the optimal fill distance after a few steps. The optimal
value is obtained by directly running the mMc-PSO algorithm
using the R package minimaxdesign (Mak 2016) on the true



72 S. WANG ET AL.

Figure 6. The fill distance and computational time for an OSFD of size n generated by nearest neighbor-based OSFD-EI and GP-based OSFD-EI. The underlying function is
f 100

exp. The lines denote the average over 10 replications and the error bars represent the 5th and 95th quantiles.

Figure 7. Fill distance for OSFD-EI, OSFD-greedy, ISFD, two-phase, and optimal
minimax OSFD (black dashed line) against run size for the inverse radius function in
(4). Lines denote the average values and the shaded bands mark the 5th and 95th
quantiles.

output space. Another advantage of our algorithms compared to
the two-phase algorithm is its speed. To generate a design of size
150, the computational time for OSFD-EI and OSFD-greedy are
1.1 sec and 0.7 sec, respectively, while it takes 6.8 sec for the two-
phase algorithm in a 2.6 GHz 6-Core Intel Core i7 processor.
This computational saving becomes even more substantial as the
design size increases.

The foregoing simulation is repeated on the exponential
function in (11) with α = 10, 40, 100. We initialize the OSFD
algorithms using n0 = 50 random LHD points in the input
space. We can see from Figure 8 that both the OSFD algorithms
are superior to ISFD (using random LHD) when α = 10.
As the α increases, the problem becomes more challenging.
We can see that the OSFD-EI performs much better than the

OSFD-greedy and the two-phase algorithm for large α. We have
also tested another version of the OSFD algorithm that uses
the Upper Confidence Bound (UCB) criterion (Garnett 2023).
The results are shown in the supplementary materials. We can
see that OSFD-UCB performs almost as good as the OSFD-
EI. This shows that the normality assumption used in (12) for
deriving the EI criterion is not critical and that one can use any
other criterion that encourages exploration to improve upon the
OSFD-greedy algorithm.

Finally, we investigate the impact of input dimension on the
performance by considering the modified Easom function in
(16). Figure 9 shows that OSFD consistently outperforms ISFD
(using random LHD) and the two-phase algorithm, however,
the advantage of OSFD diminishes as the dimension increases.
This is not unexpected as high dimension makes any feasible
set of design points sparse in the input space. Improving the
performance of OSFD for high dimensional problems could be
an important topic for future research.

5. Applications

In this section, we will present two applications of output space-
filling design.

5.1. Inverse Design

In the inverse design problem, the goal is to provide a suitable
input that can produce a desired output within a reasonable
degree of accuracy. This output can be crystal properties (Ren
et al. 2022), modulating properties of optical devices (Molesky
et al. 2018), or the acoustic properties of material structures
(Krishna et al. 2022), etc. If a large number of targets are of
interest, OSFD design can quickly give the set of inputs that can
approximately achieve the targets.

Here we consider a simple example in which we hope to
control a robot arm in a two-dimensional plane (An and Owen
2001). The robot arm has four extendable segments of lengths
L1, L2, L3, L4 and are at angle θ1, θ2, θ3, θ4 to the horizontal
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Figure 8. Fill distance for OSFD-EI, OSFD-greedy, two-phase, and random LHD against run size for the exponential function in (11) with α = 10, 40, 100. Lines denote the
average values and the shaded bands mark the 5th and 95th quantiles.

Figure 9. Fill distance for OSFD-EI, OSFD-greedy, random LHD, two-phase, and optimal minimax OSFD (black dashed line) against run size for the modified Easom function
with p = 4, 8, 12 with initial design size of 20, 200, 300. Lines denote the average values and the shaded bands mark the 5th and 95th quantiles. The two-phase algorithm
for p = 12 is terminated at n = 1500 due to high computational time and memory requirement.

coordinate axis of the plane. The location of the end of the robot
arm (u, v) is

u =
4∑

i=1
Li cos

⎛
⎝ i∑

j=1
θj

⎞
⎠, v =

4∑
i=1

Li sin

⎛
⎝ i∑

j=1
θj

⎞
⎠,

where Li ∈ [0, 1] and θi ∈ [0, 2π ] for i = 1, 2, 3, 4. Clearly, the
arm’s range of motion is within a circle of radius 4.

Figure 10(a) shows that the outputs from the OSFD-greedy
has a considerably better coverage of the full output space than
the outputs generated by an ISFD (generated using the maximin
LHD). To quantify the approximation error in an inverse design
application, we generate 100,030 uniform points inside the circle
shown in Figure 10(a) (left). The distances from each target y∗
to the closest output point 	 = dy(y∗, N1(y∗)) should be as
small as possible. The nearest output point N1(y∗) is found from
the outputs of OSFD and ISFD, respectively. From Figure 10(b),
we can see that the distances from the target outputs produced

from OSFD are in general significantly lower than those from
the ISFD.

5.2. Feature-Based Modeling

In this section, we present an exemplar case study of feature-
based modeling within the field of material informatics based
on Generale and Kalidindi (2021) in which a model-based
linkage between virtually generated 5-harness satin (5HS)
ceramic matrix composite (CMC) microstructures and their
effective orthotropic thermal conductivity was developed.
A GP-based model was trained through an active learning
framework to reduce the computational burden inherent in
performing finite element (FE) based thermal analyses. Sub-
sequent microstructures selected for evaluation were identified
through maximum posterior uncertainty and constrained to a
preexisting microstructure ensemble. The input features for this
model were extracted from n-point spatial correlations of the
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Figure 10. Robort arm application: (a) Scatterplot of the outputs from OSFD and Maximin-LHD; (b) The distances from the targets to the closest output point (	). Total
number of targets is 100,030. Design size is 300. Initial design is generated by maximin LHD of size 30.

Table 1. Geometric parameters for CMC.

Microstructural dimension Minimum Nominal Maximum

Tow major axis - tw 788 985 1182
Tow minor axis - th 92 115 138
Tow spacing - ts 880 1100 1320
Ply spacing - pc 257 275 292
Matrix thickness - mt 47 78 109

microstructure (also referred to as n-point statistics) (Torquato
2002). As a collective, n-point spatial correlations provide a
hierarchy of increasingly complex descriptions of the material
microstructure. One-point spatial correlations capture the prob-
abilities of finding a specific local material state (i.e., microscale
constituent) at any randomly selected voxel in a discretized
representative volume element (RVE), more commonly referred
to as the local material state’s volume fraction. With increasing
complexity, two-point spatial correlations define the probability
of finding two specified local states at the head and tail of a
randomly placed vector in the RVE. From solely the description
of the first two n-point spatial correlations, it quickly becomes
apparent that this representation of a materials microstructure
is extremely high-dimensional in nature, with each dimension
capturing a singular statistic related to the spatial arrangement
of local states (Kalidindi 2015). In this case study, two-point
spatial correlations were computed for an ensemble of virtually
generated 5HS CMC RVEs, with principal component analysis
(PCA) performed to extract a low-dimensional representation
of microstructure. Each microstructure in this ensemble was
generated through the open-source software package TexGen
(Lin, Brown, and Long 2011), with five generating geometric
parameters considered, as listed in Table 1.

The first three geometric parameters listed controlled the
generation of each ply within the RVE, defining the cross-
sectional shape of the reinforcing tows through the tow
major and minor axes, and the tow spacing within the woven
architecture. The RVE was then assembled through the stacking
of eight plies of the 5HS repeating unit cell (RUC) (Naik

1996). The ply spacing then defined the distance from ply to
ply within this stack. With these four geometric parameters,
completely dense voxelated microstructures, consisting of tow
or matrix voxels, were output by TexGen (Lin, Brown, and
Long 2011) with 1003 total voxel count. Subsequently, matrix
voxels were reassigned to pores by a threshold defined by
the matrix thickness parameter, resulting in RVEs with three
constituents. A Maximin LHD was then used to generate
3125 unique microstructures. It should be highlighted that
for a microstructure of size 1003 with three constituents, the
collection of 2-point spatial correlations results in 3 × 1003

dimensions, including two sets of auto-correlations, and one
set of cross-correlations. A schematic demonstrating the overall
process employed in their work can be seen in Figure 11, which
outlines the feature engineering protocol from microstructure
ensemble generation, to computation of two-point spatial
correlations and through performing PCA to establish three-
dimensional inputs into the predictive GP model. While it was
demonstrated that the active learning framework significantly
reduced the computational demand, a core limitation consisted
of defining the geometric parameterized microstructure input
space to be space-filling rather than the low-dimensional
representation (i.e., the final input to the GP model), leading to
suboptimal model building as coverage of the output space, in
this case the principal components of the set of two-point spatial
correlations, were poorly clustered. Subsequently, we present
the benefits of employing an OFSD on their three-dimensional
microstructure dataset.

The feature engineering protocol shown in Figure 11, can be
described as a mapping f (x) : X → E , where X is the input
space of (tw, th, ts, pc, mt) and E is the feature space of the three
major features (e1, e2, e3). In order to demonstrate the proposed
utility of employing the OSFD algorithm on this dataset, 50
microstructures from the complete ensemble were selected as
an initialization subset to estimate the principal component (PC)
basis and lock it in place with sequential selection of microstruc-
tures in the feature space. The OSFD-EI algorithm was then
applied to sequentially select an additional 100 microstructures
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Figure 11. The process to build a reduced-order model for CMC thermal conductivity. Adapted from Generale and Kalidindi (2021).

Figure 12. CMC application: features from the whole dataset (gray solid circles), maximin LHD (blue crosses on the left), and OSFD-EI (red crosses on the right).

from the ensemble best filling this feature space, with the results
displayed in Figure 12. The identified OSFD is shown overlaid
against the PCA representation of the complete ensemble in
gray, demonstrating the impressive coverage of this input feature
space through a minimal collection of all available microstruc-
tures. For comparison purposes, the left panel of Figure 12
displays the results from selecting 150 microstructures using
an ISFD, as generated through a 150-run Maximum LHD and
selecting the nearest neighboring point. Quantitatively, the fill
distance for the features generated by ISFD is 3.43 while that
produced by OSFD-EI is 0.67 and is 0.98 by OSFD-greedy (scat-
terplot is shown in the appendix). This direct comparison clearly
displays the poor coverage offered through selecting model-
building inputs with an ISFD in comparison to the proposed
OSFD for this application.

There are several benefits of employing an OSFD instead
of an ISFD in this application. Most importantly, the coverage
provided through 150 points generated through the OSFD algo-
rithm is nearly as good as the complete ensemble of 3125 points,
conventionally generated through an ISFD. This fact has impor-

tant implications for the overall cost of training the final GP-
based structure-property linkage, as microstructure generation
and the application of PCA to the complete ensemble with size
3125 × 3 × 1003 is computationally expensive and represents
overhead which can be substantially reduced through the use
of an OSFD. The use of an OSFD could also be leveraged to
generate additional structures in regions of the input space with
insufficient coverage, clearly visualized in Figure 12. The use of
such additional points may lead to a more robust final model, as
GP-based models are well known to extrapolate poorly.

6. Conclusions

It is common to use a space-filling design in the input space to
generate the computer model outputs and develop the input–
output relationship. In this article we have demonstrated that
for several applications, and contrary to conventional model
building workflows, filling the output space is more desirable
than filling the input space. We have proposed a sequential
design that identifies the largest gap in the output space and
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generates an input point to fill-in that gap. Two versions of
the sequential design are proposed: a greedy algorithm and an
expected improvement-based algorithm. The greedy algorithm
is faster than the EI algorithm, but the EI algorithm gives a more
robust performance. We have demonstrated the usefulness of the
proposed method on two applications involving inverse design
and feature-based modeling.

Although we have used nearest neighbor method in our
sequential design algorithms because of its computational speed,
other surrogate modeling techniques can be used as long as
they can be trained quickly with large amounts of data. The
traditional GP model did not perform well in our applications,
but we believe nonstationary GP models that scale well with the
size of data such as laGP (Gramacy and Apley 2015) or twinGP
(Vakayil and Joseph 2023) can further improve the performance
of OSFD. We leave this as a topic for future research.

Supplementary Materials

Algorithms and additional results: The statements of Algorithms 1–5 are
given in the file appendix.pdf along with some additional results.
Codes: The R codes to reproduce Figure 7 and an R Markdown tutorial are
included in a zip file. The implementation of the algorithms is available in
the R package OSFD (Wang and Joseph 2023).
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