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Hierarchical multiscale modeling of heterogeneous materials has traditionally relied upon a deterministic
estimation of constitutive properties when making microstructure-sensitive predictions of effective
response at each subsequent length-scale. Such an approach is wholly unsuitable for a variety of material
classes, such as ceramic matrix composites, which exhibit large variability at multiple length-scales. This
work demonstrates a framework for approaching two open problems towards improved microstructure-
sensitive predictions, namely, (i) probabilistically calibrating complex constitutive models at the mesos-
cale to sparsely observed macroscale experimental data, and (ii) propagating this stochastic constituent
behavior at the mesoscale towards low-cost homogenized predictions for unseen microstructures. The
proposed stochastic scale-bridging framework displays a continuity of information flow where no portion
of the experimental data is neglected out of convenience, facilitating the greatest information gain from
oftentimes costly experiments. In this paper, suitable protocols were developed to address the challenges
described above. The protocols were subsequently demonstrated on ceramic matrix composite’s uniaxial
tensile stress–strain response, where constituent behavior at the mesoscale was described using contin-
uum damage mechanics, and predictions encapsulating constitutive model parameter uncertainty were
made for novel microstructures. The methodology presented in this work is broadly applicable to various
material classes and constitutive models with high-dimensional parameter sets.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Ceramic-matrix composites (CMCs) using textile architectures
are of tremendous interest for a variety of high-temperature struc-
tural applications [1–4]. The use of textile architectures offers an
extremely large design space for the optimization of the compo-
nent performance through varied stitching patterns (e.g., weaving,
braiding, knitting) [5,6] and the selection of different constituent
fiber and matrix materials. This large design space offers tremen-
dous choice in the selection of combinations of effective properties
[7]. However, due to the inherent variability in the multiple man-
ufacturing steps involved, CMCs often exhibit significant stochas-
ticity in their effective properties/performance [7–9]. This
stochasticity in performance arises from both the variability in
the properties of the CMC constituents (e.g., variability in the local
properties of the matrix and the fibers) and the variability in their
complex microstructures (caused by variability in the processing
steps such as the preform production and final densification)
[10]. In order to formally explore the large CMC design space
within the component design process, it is necessary to develop
rigorous and efficient computational schemes that can predict
their effective properties as a function of the constituent properties
and the microstructure, while accounting for their stochasticity.
Historically, this task has been addressed primarily through exten-
sive experimental testing campaigns that estimated parameters
associated with classical phenomenological models of the mate-
rial’s effective properties. However, these traditional approaches
incur inordinate cost as one typically needs to test a large number
of permutations of weave architectures, processing histories, and
multiple loading conditions.

Traditional efforts to model the performance of CMCs have lar-
gely leveraged approaches that replicate their observed nonlinear
behavior, including the modeling of discrete crack formation
through fracture mechanics [11], effective fracture processes
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through continuum damage mechanics (CDM) [12–14], and exten-
sions incorporating viscous behavior [15,16] and/or plasticity [17].
CDM models have been particularly attractive because of their
computational tractability in modeling the accumulation of dam-
age in a continuum sense, enabling a homogenized consideration
of the lower length-scale damage processes such as matrix crack-
ing, interface debonding, and fiber fracture [14,18–20]. However,
such models employ large numbers of parameters that require cal-
ibration to experimental measurements [14,21,22]. In such a high-
dimensional parameter space, over-parameterized models with
limited experimental data are known to provide nonunique solu-
tions [23]. While these models applied at the macroscale show
potential in the modeling of effective material response, they do
so at the expense of the abstraction of various micro-scale phe-
nomena, representing a significant simplification of material
behavior. Higher resolution modeling approaches in which various
length-scales of the microstructure are explicitly modeled in a
finite element (FE) framework (often through the use of represen-
tative volume elements (RVEs)) open new avenues for a greater
understanding of the evolution of the underlying physical pro-
cesses. This explicit modeling of microstructural constituents
enables a linkage between processes occurring in individual con-
stituents and their effect on homogenized properties, providing
valuable information for the design of materials. Detrimentally,
this higher expressivity comes at the cost of greatly expanding
microstructure uncertainty alongside the model parameter space
required to predict constitutive behavior, only further compound-
ing the issues of identifiability mentioned earlier. In prior litera-
ture, this coupled problem is often addressed by preferentially
emphasizing the importance of rigorously determining the RVE
domain1, while identifying constituent behavior through experi-
mental testing of individual constituents [26–30]. This method of
constituent property assignment in the RVE implicitly assumes a
similarity in constituent behavior regardless of the multimodality
of the stress state, such that potentially significant error is propa-
gated through the constituent properties even after much attention
has been placed towards minimizing error associated with the
microstructural domain.

The simulation computational cost for effective properties
which depend upon higher order spatial statistics of the
microstructure, such as high-cycle fatigue, ductility, or damage
can potentially be exceedingly high, presenting computational
challenges when a multitude of loading conditions must be evalu-
ated [25,31]. A related concept is that of a statistical volume ele-
ment (SVE) which samples the distributed microstructural
attributes of a particular material system, significantly reducing
the domain size required, and enabling the evaluation of the effec-
tive properties of the RVE through the use of an ensemble of SVEs
[25,31]. As such, the use of SVEs provides a promising method for
the exploration of the microstructural space and the attendant
combinations of effective properties.

The robust prediction of CMC response requires an adequate
understanding of both stochasticity in constituent properties
alongside stochasticity in their microstructure. Towards this end,
prior work has leveraged Bayesian inference [32–35] in the uncer-
tainty quantification (UQ) of mechanical model parameters for
simple macroscale models, such as the identification of the effec-
tive elastic constants in an aluminum alloy [36], a polymeric mate-
rial embedded in glass [29], and laminate composites [37,38]. More
complex constitutive models have also been explored while
neglecting the effects of microstructure, such as the one-
dimensional Von-Mises plasticity model with strain hardening
1 Defined to be the smallest domain in which the distribution of effective response
does not change with the location of sampling from the larger ensemble, or increasing
the size of the domain [24,25].
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[39,40], viscoelasticity [41–43], viscoplasticity [44], and viscous-
damage models [45,46]. Uncertainty has also been investigated
at multiple length-scales in composites through more traditional
means, such as sensitivity analyses [47], or the propagation of dis-
crete samples [48,49]. It should be highlighted that the number of
parameters explored in these works are significantly lower than
those used in the scale-bridging microstructure-sensitive models
needed for the reliable predictions of effective properties of hetero-
geneous material systems. In recent work, the uncertainty in the
description of the constitutive parameters in crystal plasticity
models was quantified and propagated to specialized classes of
preferentially oriented microstructures observed in additively
manufactured samples [50]. A rigorous framework that generalizes
these approaches to complex constitutive responses of RVEs/SVEs
is critically lacking.

Statistical descriptors of microstructure arise from the treat-
ment of microstructures as instantiations of a stochastic process
that could be defined using the framework of n-point correlation
functions [51–56]. The main concept underlying this framework
is that the salient details of a microstructure controlling its effec-
tive properties are indeed captured in the n-point spatial correla-
tions. It is further argued that the stochasticity of the
microstructure is adequately captured by an ensemble of SVEs pro-
duced from a subset of specified n-point spatial correlations (usu-
ally extracted from the microstructure images obtained from the
physical samples of interest). Named the Materials Knowledge Sys-
tems (MKS) [57–59], this approach has enabled the formulation of
various Structure–Property (SP) linkages through the use of
machine-learned surrogate models linking statistical descriptors
of a microstructure to its effective properties [60–65]. Importantly,
these low-cost SP linkages enable rapid exploration of the
microstructural space and are particularly attractive for use in
the accelerated design of novel materials [51,66,67]. While inher-
ently encapsulating microstructure uncertainty through these
advanced statistical descriptors, the SP linkages produced have lar-
gely assumed complete certainty regarding underlying constituent
behavior at lower length-scales through the deterministic assign-
ment of their properties. As such, this approach continues to fall
short of the stated goal of uncertainty quantification in
microstructure-sensitive constitutive modelling of heterogeneous
material systems. Such SP linkages can only be created through a
comprehensive understanding of both the inherent constituent
and microstructural stochasticity, conditioned upon available
macroscale experimental data. The challenges involved are com-
pounded by the small experimental datasets typically available
in the development of advanced material systems, such as woven
CMCs.

The primary focus of this work is to resolve the numerous sta-
ted challenges in the stochastic scale-bridging for establishing low-
cost probabilistic microstructure-sensitive predictions of effective
properties. Towards this end, an experimental dataset consisting
of five macroscale stress–strain responses of 8-ply stack of 8-
harness satin SiC/SiC CMCs densified through chemical vapor infil-
tration (CVI), and two microstructural scans performed through
micrometer resolution X-ray computed tomography (lCT) are uti-
lized. This very limited experimental dataset is ideal for demon-
strating the power and versatility of the framework proposed in
this paper. The homogenized behavior of fiber bundles, or tows,
and matrix material (encompassing residual macroscale porosity
from CVI processing) were modeled through the use of an orthotro-
pic CDM model defined as an Abaqus/Explicit user-defined mate-
rial model (VUMAT) applied to stochastic virtual SVEs. The
specific CDM model explored in this study had 13 parameters.
The posterior of these CDM model parameters was establishing
by devising and applying a number of novel workflows, including
(i) Bayesian inference of high-dimensional CDM model parameters



2 Alternatively referred to as Bayesian calibration [77], probabilistic inversion [23],
or Calibration under Uncertainty (CUU) [78].
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of the microstructure constituents, conditioned upon the limited
set of available macroscale stress–strain curves, (ii) a three-step
update framework to reduce the extremely high-dimensionality
of the problem through a probabilistic decoupling of the CDM
model parameter space and hierarchical reduced-order SP linkages
accounting for all sources of uncertainty dictating the effective
response of the microstructure, (iii) propagation of all available
experimental data towards low-cost probabilistic microstructure-
sensitive predictions, and (iv) direct tracking of all informative
information frommacroscale experimental data through to mesos-
cale property identification, and back to macroscale performance
of varied microstructures.

2. Background

2.1. Continuum damage model

The damage processes occurring at varied length-scales in CMCs
during progressive loading result in multiple energy dissipating
mechanisms such as matrix cracking, interface debonding, sliding
at the fiber/matrix interface, and fiber fracture [7,13]; all of these
mechanisms contribute to their overall damage tolerance and non-
linear behavior. As previously mentioned, CDM models have his-
torically been an attractive method for the mathematical
modeling of the CMC mechanical behavior [14,18,21,22], and have
been adopted in this work. The CDM model utilized in this work is
a variant of that presented by Chaboche et al. [68], originally cre-
ated for application to brittle materials and CMCs. It is an orthotro-
pic CDM model which utilizes scalar damage variables fd1; d2; d3g,
alternatively referred as da with damage mode index a ¼ f1;2;3g,
associated with the principal axes of the orthotropic material. This
model simplification implies that the principal directions of dam-
age are aligned with the axes of anisotropy describing the orthotro-
pic material behavior, an assumption extensively applied in similar
works in current literature on CMCs [68–71]. A thermodynamic
potential such as the Helmholtz free specific energy potential can
be defined as a function of an observable state variable, e, and a
latent internal damage variable, da.

w ¼ wðe;daÞ ð1Þ
From Eq. (1) a thermodynamic force associated with the dam-

age variable da can be defined as

Ya ¼ �q @w
@da
¼ �1

2
e � CðdaÞ

@da
e ð2Þ

where C is the fourth-order stiffness tensor, q is the material den-
sity, and Ya can be seen to represent the specific strain-energy
release rate, in an analogous form to the energy release rate of clas-
sical fracture mechanics [72]. To satisfy the Clausius–Duhem
inequality, energy dissipation through damage must be positive

(i.e., Ya
_da P 0). As Ya is always defined to be a positive quantity

(through Eq. (2) and required softening with increasing damage),

this requires that _da P 0. Damage evolution is often defined in an
integrated form as a monotonically increasing function to satisfy
such thermodynamic constraints. A Weibull form of this integrated
evolutive equation is particularly attractive as it accounts for satu-
ration effects commonly observed in CMCs [22]. It is defined as

daðtÞ ¼ 1� exp � YaðtÞ � Yað0Þ
ba

� �na� �
ð3Þ

where YaðtÞ ¼ sups6tYaðsÞ defines the highest strain energy release
rate attained in the loading history [14,21,22], Yað0Þ specifies the
initial threshold strain energy release rate for the initiation of dam-
age, h�i the Heaviside function, and na and ba denote material
parameters. Yað0Þ is initialized as X2

Ta=2Ea, where Ea denote the
3

orthotropic elastic moduli and XTa is the uniaxial strength in ten-
sion. The method of strain equivalence [73] is leveraged to identify
a transformation between the current stress tensor r and an effec-
tive stress tensor ~r defining the equivalent stress that would need
to be applied to the undamaged material to obtain the same strain
tensor. Under this assumption, this mapping is conventionally per-
formed through a fourth-order damage operator MðdaÞ
~r ¼MðdaÞr: ð4Þ
The method of strain energy equivalence is used in order to define
the form of MðdaÞ, in its diagonal form in the principal coordinate
system of d, using Voigt notation as

MðdaÞ¼

1�d1 0 0 0 0 0
0 1�d2 0 0 0 0
0 0 1�d3 0 0 0
0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�d2Þð1�d3Þ

p
0 0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�d1Þð1�d3Þ

p
0

0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�d1Þð1�d2Þ

p

26666666664

37777777775
:

ð5Þ
The modification of the undamaged compliance tensor S0 is then
expressed as

SðdaÞ ¼M�1ðdaÞS0M
�1ðdaÞ: ð6Þ

The constitutive response of both constituents of the woven
composite are prescribed using the CDM model described above.
Further, it was assumed that both constituents, namely, the tows
and the effective matrix (encompassing residual porosity from
the CVI process), exhibit transverse isotropy. The axis of transverse
symmetry for the tows was assumed to be along the tow longitu-
dinal axis, while that for the effective matrix was assumed to be
the out-of-plane direction of the composite. The effective matrix
was modeled in this manner owing to the defect structures com-
monly observed in the matrix of CMCs, resulting in deviations from
isotropic behavior [74]. As a result, the complete list of model
parameters requiring calibration for the composite SVE is the 12-
dimensional vector,
h ¼ fXt

t1;n
t
1; b

t
1;X

t
t2=3;n

t
2=3; b

t
2=3;X

m
t1=2;n

m
1=2; b

m
1=2;X

m
t3;n

m
3 ; b

m
3 g, where

superscripts refer to tows ðtÞ or effective matrix ðmÞ, and subscripts
refer to a specific damage mode index.

2.2. Bayesian inference of model parameters

The procedure for estimating model parameters given noisy
observations is formally known as the inverse problem [75,76] 2.
The governing statistical model in this procedure is defined as

yE ¼ yMðhÞ þ n ð7Þ
where yE denotes the noisy observational data, yM the predictive
model with unknown parameters h, and n the unknown observa-
tional noise. Directly calculating the inverse of the predictive model
given yE is generally intractable in practice, limiting the methods of
identifying h which best matches the experimental data to model
predictions. The CDM model used in this work, when applied to
mesoscale constituents in an SVE, is sufficiently flexible to model
highly variable homogenized nonlinear material behavior, at the
cost of increased model parameterization. This high-dimensional
parameterization presents significant challenges in the identifica-
tion of h, especially given sparse experimental data. It is precisely
this scenario in which Bayesian approaches become increasingly
useful in their ability to treat model parameters as stochastic vari-
ables exhibiting a distribution of feasible values, rather than provid-
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ing a deterministic result. The application of Bayes’ theorem to this
problem is commonly expressed as

pðh j yEÞ ¼ pðyE j hÞpðhÞR
pðyE j hÞpðhÞdh ð8Þ

where pðhÞ represents the prior encapsulating incoming knowledge
(i.e., initial guess) of the values of h; p yE j h� �

the likelihood of sam-
pling the experimental observations yE for a specific set of model
parameters, and pðh j yEÞ the posterior representing the updated
belief on the model parameters h conditioned upon the experimen-
tal observations yE. The manipulation of conditional probabilities in
Eq. (8) is especially useful in cases where pðyE j hÞ is easy to directly
compute but an analytical form for pðh j yEÞ is intractable. The like-
lihood is often considered as Gaussian as it arises from the model in
Eq. (7) through a propagation of uncertainty with the assumption of
normally distributed noise ðn � Nð0;rÞÞ, while for a given h; yM pro-
vides a deterministic output. In applications where little prior
knowledge over model parameters is available, distributions with
large variances are often taken for the prior to limit its influence
over the posterior.

2.2.1. Affine-invariant ensemble Markov Chain Monte Carlo algorithm
The identification of the posterior multidimensional parameter

distribution conditioned on the observed experimental data (from
Eq. (8) was estimated through the Affine-Invariant Ensemble
MCMC algorithm [79,80]. This ensemble sampler was utilized
due to the expectation of multimodal behavior or skew in the pos-
terior distribution, owing to the high-dimensionality of the param-
eter space. MCMC algorithms enable samples to be drawn from the
posterior probability density (Eq. (8)), without computing the evi-
dence, which is generally expensive or intractable to compute [80].
The sampling strategy of MCMC can be viewed as a method for
generating a random walk in parameter space that with sufficient
iterations, results in a representative set of samples from the pos-
terior distribution. During this random walk, each individual point
in the Markov chain XðtiÞ ¼ hi depends solely on the position of the
prior step Xðti�1Þ ¼ hi�1. In comparison to the standard Metropolis–
Hastings (M-H) algorithm, the Affine-Invariant Ensemble algo-
rithm employs an ensemble of K walkers S ¼ fXkg, where the pro-
posal distribution for one of the walkers (indexed by k) is based on
the locations in parameter space of the remaining K � 1 walkers
defining the complementary set of walkers S½k� ¼ Xj;8j– k. During
each iteration, the position of all walkers in the ensemble is
updated. In order to update the position of a single walker at posi-
tion Xk, a walker is drawn at random from the complementary set
S½k� and the new proposed position for the walker Xk can be written
as

W ¼ Xj þ ZðXkðtÞ � XjÞ ð9Þ
with Z being a random variable drawn from the distribution jðzÞ.
The particular distribution recommended by Goodman and Weare
[79] is

jðzÞ /
1ffiffi
Z
p if z 2 1

a ; a
	 


0 else

(
ð10Þ

where a is a tunable parameter set to 2. The proposal walker loca-
tion is then accepted with probability

q ¼ min 1; ZD�1 pðW
pðXkðtÞÞ

� �
ð11Þ

where D is the dimensionality of the space being sampled. The pro-
posal is then accepted or rejected when compared against a sample
drawn from a standard uniform distribution r  R � U½0;1�. If r 6 q
then the transition is accepted and Xkðt þ 1Þ is assigned the position
4

W. The algorithm described above has been extensively used in
astrophysics applications [81–83] where models exhibit similar
high-dimensionality as the CDM model considered in this work.
In such high-dimensional spaces, traditional algorithms require
multiple tunable parameters (their number scaling with the prob-
lem size), whereas the Affine-Invariant Ensemble Sampler employs
only one parameter [80]. It has also been shown to provide
improved performance in highly skewed distributions (such as the
Rosenbrock density) over the conventional M-H algorithm [79].
The specific MCMC algorithm used in this study is implemented
in the python package emcee, developed by Foreman-Mackey et al.
[80].

2.2.2. Support points and minimum energy distance
Due to the stochastic nature of random walks through probabil-

ity space, it should be apparent that for MCMC sampling to suffi-
ciently approximate a distribution requires an extremely large
number of samples. This large collection of samples which collec-
tively define the approximate distribution severely limits one’s
ability to propagate the uncertainty of complex multi-modal distri-
butions forward in an analysis. The concept of support points
defined through work of Mak and Joseph [84] allows for a method
of compacting MCMC samples in Bayesian computation. Such sup-
port points represent a reduced number of points which when
taken collectively minimize the energy distance between the orig-
inal MCMC posterior and a compact approximate posterior distri-
bution. The original MCMC posterior can be summarized by the
dataset D ¼ fZigNi¼1 2 RN�d, which are drawn from the underlying
posterior distribution Zi � F. The energy distance ED [85] measure
defines a metric for measurement of the similarity of distributions
of random vectors. For fzigni¼1 points within D the energy distance
can be estimated as

EDn;N ¼ 2
nN

Xn
i¼1

XN
j¼1
kzi � Zjk2 �

1
n2

Xn
i¼1

Xn
j¼1
kzi � zjk2

� 1
N2

XN
i¼1

XN
j¼1
kZi � Zjk2 ð12Þ

where k � k2 is the L2 norm. The minimization of this metric results
in a collection of points best representing F, known as support
points [84]. Algorithms for the solution of this optimization prob-
lem are detailed in the work of Vakayil and Joseph [86] and have
been employed in this work.

2.3. Feature engineering of microstructures

2.3.1. 2-Point spatial correlations
Quantification of the microstructure is performed in this work

through the use of 2-point spatial correlations and the MKS frame-
work [57–59]. This framework utilizes a voxelated representation
of the SVE as an array mh

s [57], reflecting the volume fraction of
material local state h in voxel s. For describing 3-D SVEs, it is con-
venient to use s ¼ fs1; s2; s3g. Furthermore, as each voxel is
assigned to a singular material local state, the value of mh

s is either
zero or one (otherwise described as eigen-microstructures) [57].
The strategies and protocols for computing 2-point correlations
of a microstructure have been described in detail in prior literature
[57,59], and can be expressed as

f hh0r ¼
1
j S j

XS
s

mh
sm

h0
sþr ð13Þ

where S denotes the set of voxels in the 3-D periodic SVE of the

microstructure, and j S j the total number of voxels. f hh0r can be com-
puted efficiently using the Fast Fourier Transform (FFT) algorithm
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[62,87], and serve as the initial high-dimensional set of features
representing the microstructure in formulating the desired SP link-

ages. More specifically, f hh0r can be visualized as a mapping between
a specified vector r and a statistic that informs the probability of
finding the specified local states separated by this vector in the

microstructure. Consequently, in the r-space, f hh0r can be visualized
as a 3-D contour [88–90].

2.3.2. Dimensionality reduction
Principal component analysis (PCA) offers a robust dimension-

ality reduction method for the set of spatial correlations consid-
ered in this work [91]. This method linearly transforms the
original data into a new frame that is arranged to maximize the
variance captured with each orthonormal basis vector. This trans-
formation can be mathematically described as

fðjÞr ¼
XminððJ�1Þ;RÞ

k¼1 aðjÞk ukr þ fr ð14Þ

where fðjÞr is a vectorized representation of the spatial correlations of
the jth microstructure, J is the total number of microstructures, R is

the number of dimensions in the original dataset, aðjÞk are the prin-
cipal component weights (i.e., PC scores) of the jth microstructure,
ukr is the principal components (i.e., basis vectors of the trans-

formed space), and fðjÞr represents the expected value of fðjÞr across
the ensemble. The number of principal components to be retained
(i.e., R) can be determined through the evaluation of the explained
variance by each basis vector as a portion of the total variance in the
full dataset. Prior work [90] has demonstrated that more than 90%
of the variance in most microstructure ensembles is explained
within the first five terms. This reduction in dimensionality without
appreciable loss in representation greatly facilitates the develop-
ment of high fidelity reduced-order SP models.

2.4. Sparse variational multi-output gaussian process regression

The Sparse Variational Multi-Output Gaussian Process (SV-
MOGP) utilized in the development of the forward surrogate model
in this work is briefly described in this section, with more details
presented in Appendix A.

Gaussian processes (GPs) [92] can be viewed as probability dis-
tributions over functions, providing important properties related
to Bayesian analyses [32,34]. A stochastic function can be
described as a GP, i.e., f ð�Þ � GPðtð�Þ; kð�; �0ÞÞ, which is uniquely
determined through a mean function tð�Þ and a covariance function
kð�; �0Þ parameterized by hyperparameters, hk. Often, the mean func-
tion is taken to be t � 0 without loss of generality.

Given a training dataset, fðxn; ynÞgNn¼1 of N corrupted observa-
tions with an assumed Gaussian noise ni � Nð0;r2

yÞ (see Eq. (7)),
the collection of all training inputs can be denoted as X, the vector
of all outputs as y, and f the training latent function values. The
covariance function used in this work is the automatic relevance
determination squared exponential (ARD-SE) [32] defined as

kðx;x0Þ ¼ r2
f exp �1

2

XN
n¼1

ðx� x0Þ>ðx� x0Þ
k2n

 !
ð15Þ

where the hyperparameters, hk, are comprised of kn specifying a
separate length-scale for each input dimension and rf the ampli-
tude. Exact inference of a single output GP model can be performed
through estimating the covariance hyperparameters by maximiza-
tion of the log-marginal likelihood given by

logpðyjX;hkÞ ¼ �1
2
y> Kff þr2

yI
h i�1

y�1
2
log Kff þr2

yI



 


�N

2
logð2pÞ:

ð16Þ
5

In small dimensional datasets, GP regression provides a power-
ful and flexible method for the learning of scalar outputs while pro-
viding uncertainty measures on its predictions. A core limitation
preventing its widespread use is the necessity of computing

Kff þ r2
yI

h i�1
, whose computational complexity of OðN3Þ limits its

practicality when confronted with large datasets. Sparse approxi-
mations to this Gaussian process methods aim to address this task
through the use ofM inducing inputs Z ¼ fzmgMm¼1 independent of X
(also referred to as pseudo-inputs) resulting in cost OðNM3Þ time
for a chosen M 6 N, providing a low rank approximation to the full
covariance Kff . An elegant method to accomplish this task is the
Variational Free Energy (VFE) approximation [93]. The covariance
function hyperparameters and inducing inputs are jointly opti-
mized by maximizing a lower bound to the exact marginal likeli-
hood, where the inducing input locations are selected through
minimization of the Kullback–Leibler (KL) divergence (denoted as
DKL) between the variational GP and the true posterior GP. Impor-
tantly the KL divergence provides a metric on the error of the
approximation to the exact posterior solution, while the method
of selecting the inducing points provides a method of regulariza-
tion on the solution, avoiding overfits. This lower bound to the
exact marginal likelihood can be expressed using a distribution
qðf Þ over the entire infinite dimensional function as

Fðq�; hkÞ ¼ logpðy j hkÞ � DKLðqðf Þkpðf j y; hkÞÞ ð17Þ
The function values at the inducing point locations are denoted

as u. The disjoint infinite dimensional function can then be repre-
sented as f ¼ fu; f–ug, and an approximation to the posterior is
provided by qðf Þ ¼ qðu; f–u j hkÞ ¼ pðf–u j u; hkÞqðuÞ. Under this
approximation, f–u is only influenced through the inducing points
and not the data directly. This approximate posterior simplifies the
VFE bound defined in Eq. (17) to a computational complexity of
OðNM2Þ. The bound can be maximized in closed form with respect
to the variational posterior, resulting in an optimal q� and an
updated VFE bound which can be optimized for the identification
of hk as

Fðq�;hkÞ ¼ �N
2
logð2pÞ� 1

2
log K̂ff




 


�1
2
y>K̂�1ff y�

1
2r2

y
trðKff �QffÞ

ð18Þ

where K̂ff ¼ Qff þ r2I, and Qff ¼ KfuK
�1
uuKuf provides the low rank

approximation. For clarity, elements of the covariance matrices
are calculated as Kuu½ �mm0 ¼ k zm; zm0ð Þ and Kfu½ �nm0 ¼ k xm; zm0ð Þ. Pre-
dictions of the VFE model can be expanded to handle multi-
output functions in a similar manner to the scalar output case,
through expansion of the covariance matrix to express correlations
between related outputs [94]. Such Multioutput Gaussian processes
(MOGP) learn a multioutput function f ðxÞ : X ! RP with the input
space X being RD. The p-th output of f ðxÞ is expressed as f pðxÞ, with

its complete representation given as f ¼ ff pðxiÞgni¼1. MOGPs are sim-
ilarly completely defined by their covariance function (assuming
t � 0), resulting in a covariance matrix K 2 RNP�NP . Under this sce-
nario, the advantages of a sparse representation become increas-
ingly apparent, reducing the complexity from OðN3P3Þ to OðM3PÞ
with efficient inference schemes utilizing interdomain approxima-
tions [95]. In this work, the multi-output covariance matrix is con-
structed through the Linear Model of Coregionalization (LMC)
[94,96]. This model represents a method of constructing the
multi-output function from a linear transformation W 2 RP�L of L

independent functions gðxÞ ¼ fglðxÞgLl¼1. Each function is con-
structed as an independent GP; gl xð Þ � GP 0; kl x;x0ð Þð Þ, each with
its own covariance function, resulting in the final expression



Fig. 1. Monotonic stress–strain tensile specimen responses normalized by the
mean failure strain eEf and the mean failure stress rE

f (superscript E is included to
denote experimental results).
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f ðxÞ ¼WgðxÞ. The multi-output covariance function described by
this model is then expressed as

kðfx;pg; fx0;p0gÞ ¼
XL
l¼1

Wplklðx; x0ÞWp0 l ð19Þ

which can be seen to encode correlations between output dimen-
sions, and due to the form of the covariance function in Eq. (19),
the MOGP provides for an incredibly expressive model. The perfor-
mance of the SV-MOGP model is evaluated through the Normalized
Mean Absolute Error (NMAE) metric for each output dimension,
defined as

NMAEp ¼ 1
N

XN
i¼1

ypi � f pððxÞÞ


 

=yp ð20Þ

where f pðxÞ is the predicted expected value for the input vector x at
output p, and yp denotes the mean of the test output.

3. Bayesian calibration of damage model

3.1. Experimental dataset

The experimental dataset considered in this work consisted of
five 8-ply stacks of 8HS SiC/SiC CVI-densified CMCs reinforced with
Hi-Nicalon Type S (HNS) fiber. The samples were monotonically
loaded in tension until failure with the resulting normalized
stress–strain curves displayed in Fig. 1.

Additionally, two 1-inch diameter circular specimens extracted
from the same panel were subjected to non-destructive evaluation
(NDE) through micrometer resolution X-ray computed tomogra-
phy (lCT) in order to provide details of the mesoscale microstruc-
ture, including the stochastic variability of the woven tow paths
and distribution of residual macro-porosity from CVI processing.
The lCT scans were segmented with a workflow developed using
the MATLAB image toolbox [97,98] to separate the tow bundles
from the combination of matrix and macro-porosity, before com-
puting 2-point spatial correlations of the microstructure.

3.2. Virtual microstructure generation

An ensemble of virtual SVEs of 8-ply stacks were generated for
this study with the 8HS repeating unit cell (RUC) [99]. The goals of
virtual microstructure generation were (i) to produce training data
covering a broad range of microstructural variations, and (ii) to
produce microstructures with sufficient similarity to the two
experimental scans available. The generated microstructures will
enable the calibration of the CDM model damage parameters in a
Bayesian uncertainty quantification framework.

The workflow used for virtual microstructure generation is pre-
sented in Fig. 2, and consisted of four main steps that were imple-
mented utilizing the open source software TexGen [100].
Characteristic dimensions defining the microstructure were trea-
ted as random variables with Gaussian and uniform distributions
such that the generation process can be viewed as entirely stochas-
tic, outputting entirely unique microstructure instantiations. The
process starts with the specification of a single ply of the RUC. Ini-
tially, the tow cross-sections are considered to be perfectly ellipti-
cal and uniform throughout the ply. The characteristic dimensions
of the ellipse are sampled from the distributions defined in Table 1,
which are extracted from prior work on similar material systems
[101,102].

An example of a generated ply with a selected set of mean
cross-section parameters (tw and th) can be observed in frame 1
in Fig. 2. Subsequently, frame 2 is generated by moving the control
points dictating behavior of the spline at the centroid of each tow
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(indexed by b ¼ f1; . . . ;9g), and perturbing the cross-section
dimensions according to the distributions for twb and thb in Table 1
The tow cross-section shape is further perturbed through in-plane
translations and rotations at each of the control points, and finally
varied to range from a perfect ellipse to a rectangular cross-section
using options in TexGen software [100]. In frame 3, the perturba-
tion to the tow control points can be observed to follow a sinu-
soidal surface (defined using control parameters A;u;v1; v2; see
Table 1). This process assumes statistical independence during
sampling from each of the distributions listed. The composite stack
is then assembled from 8 instantiations of plies generated using
the process described above. Ply shearing, in-plane and out-of-
plane offsets, and ply compaction were all applied independently
to each ply as per the distributions summarized in Table 1. An
exemplar instantiation of an 8HS microstructure is shown in frame
4, with its corresponding voxelization shown in frame 5. Each
microstructure was discretized with uniform voxels of size 200
lm � 200 lm � 40 lm. The virtual generation strategy described
above was utilized to produce an ensemble of 1,500 microstruc-
tures. Each of these serves as a 3-D voxelated SVE, where each
voxel is assigned to be either tow or effective matrix (i.e., two dis-
tinct local states). A FE mesh was created for each SVE by convert-
ing each voxel to an eight-noded three-dimensional continuum
element with reduced integration (C3D8R elements in Abaqus
[103]). The use of such voxel-based meshing enables implementa-
tion of automated workflows for data generation and surrogate
model development [62,63,90,104–106]. All microstructures uti-
lized in this work were quantified using the 2-point spatial corre-
lations described in Section 2.3.1. For the two-constituent
microstructures studied here, only one set of auto-correlations is
adequate due to interdependencies in the complete set of 2-point
spatial correlations [51,87]. Therefore, only the tow auto-

correlations (i.e., f 00r ) are computed for use in this work. The num-
ber of computed auto-correlations is generally the same as the
number of voxels in the SVE. In our work, we standardized the
number of auto-correlations to 51� 51� 51, producing 132,651
features for each microstructure.

Fig. 3a illustrates the 3-D tow auto-correlations for an exemplar
microstructure from the generated ensemble as 2-D contours on
the main orthogonal planes through the origin (i.e., r ¼ 0);
these aid in visual clarity compared to 3-D contours. These auto-



Fig. 2. Illustration of the workflow for the stochastic generation of virtual microstructures.

Table 1
Distributions utilized for sampling the geometric parameters involved in the
specification of the RUC and the building of the woven SVE virtual microstructure.

Microstructural Parameter Description Distribution

Initial Tow Major Axis (mm) tw � Nð1:0301;0:0650Þ
Initial Tow Minor Axis (mm) th � Nð0:1218;0:0061Þ
Tow Point Major Axis (mm) twb � Nðtw;0:0650Þ
Tow Point Minor Axis (mm) thb � Nðth;0:0061Þ
Tow Point Power tpb � Uð0:1;1:0Þ
Tow Point Rotation (deg) trb � Nð�2:0;2:0Þ
Tow Point In-Plane Translation (mm) Dx1

Dx2

� �
� N 0; 0:075

0:075

� �� �
A � Uð�0:15;0:15Þ

Tow Point Out-of-Plane Translation Parameters / � Uð� p
2 ;

p
2Þ

v1;v2 � Uð0;0:5Þ
Ply Shear Angle (deg) ps � Nð�8;8Þ
Ply Compaction (%) pc � Uð0:01;0:25Þ
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correlations are denoted as f 00r (the superscript 0 refers to the tow
material state); the value at r ¼ 0 corresponds to the tow volume

fraction. Patterns seen in the f 00r contours can be directly linked
to physical features in the microstructure. For example, the repeat-
ing striations of peaks observed in the X � Z and Y � Z planes
reflect the mean spacings between the plies (controlled by pc in
Table 1). Much richer features are seen in the X � Y plane due to
the much more complex geometry of the weave in this plane.
The peaks in the X � Y plane reflect the spacings between the over-
lapping points between the warp and weft directions, which reflect
locations of higher probability of finding tow voxels. Perturbations
in the intensity of these tertiary peaks are a direct result of the
stochastic generative process, with twb and thb adjusting the local
tow to tow spacing, Dx1 and Dx2 translating tow control points
locally in-plane, and ps applying ply shearing. The sum total of
these stochastic perturbations results in a dissipation of these ter-
tiary peaks, further decreasing with distance from the position
r ¼ 0. Secondary peaks can also be observed to follow a rotated
ellipse surrounding the origin, which can be correlated to the rela-
tive positions of cross-over points in the 8HS RUC architecture. For
more information regarding the interpretation of 2-point spatial
auto-correlations in woven composites and their relation to fea-
tures of the microstructure, the reader is referred to our prior work
7

on this topic [107]. PCA is used in this work to obtain a low-
dimensional representation of the tow auto-correlations for the
full ensemble of generated microstructures. The PC basis was
established through the tow auto-correlations of the 1,500 virtu-
ally generated microstructures and 2 lCT experimental
microstructures. X � Y and X � Z sections of the first three PC bases
passing through the origin are shown in Figs. 3b and 3c, respec-
tively. Inspection of these basis maps illustrates that the first PC
basis, u1r , captures primarily volume fraction information. Addi-
tionally, u1r appears to capture salient short-range perturbations
in the overlapping points of the woven architecture, evidenced
by larger peaks immediately surrounding the origin in the X � Y
section. The influence of weaker long-range perturbations can also
be seen at the distance of the 8HS RUC cross-over points. The sec-
ond PC basis,u2r , predominately captures mid-range perturbations
surrounding the origin, as evidenced by the rotated elliptical col-
lection of peaks in the X � Y plane and the shift in correlation dis-
tance in the X � Z plane. The particularly strong band of peak
values through the origin of the X � Y plane for this basis allows
the quantification of the sinusoidal perturbations of the plies
within the microstructure. The third PC basis, u3r , appears to cap-
ture yet longer-range phenomena in the composite stack, along-
side details of ply shearing. It should be noted that each PC basis
here represents a set of 132,651 spatial statistics, and as such, their
precise interpretation is challenging. The computed tow auto-
correlations for the entire ensemble of generated microstructures
and the two experimental lCT scans (denoted as T31-B1 and
T41-B1) are projected into the first two principal bases in Fig. 4.
The X � Z cross-sections of select microstructures are shown to
provide additional confirmation regarding the ability of the PC
bases in differentiating microstructures within the ensemble.
Three microstructures were specifically selected to illustrate the
roles of PC scores a1 and a2. Microstructures #898 and #972 are
mainly different in their values of a2. Comparison of these
microstructures indicates that lower values of a2 correspond to
higher values of sinusoidal perturbation of the plies. Similarly, a
comparison of microstructures #645 and #972 suggests that larger
values of a1 correspond to higher tow volume fractions. Fig. 4 also
highlights that the distribution of generated microstructures is
much more asymmetric in a2 in comparison to a1. This is because
the sinusoidal perturbations would naturally be limited by



Fig. 3. Exemplar spatial correlations along with PC bases. (a) Orthogonal sections passing through the origin from an exemplar set of computed 3-D tow auto-correlations, (b)
X � Y sections passing through the origin for the first three PC bases, u1:3r , (c) X � Z sections passing through the origin for the first three PC bases, u1:3r .

Fig. 4. Principal component representations of the ensemble of microstructures studied along with exemplar microstructures. (a) Cumulative explained variance with
increasing number of principal components, and (b) projected view of the virtually generated microstructure ensemble and the two experimental microstructures in the PC
subspace spanned by u1r and u2r .
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increasing ply compaction, thus making it difficult to generate
microstructures that are both compacted and exhibit high levels
of sinusoidal perturbations. Note that these characteristics of the
generated ensemble are captured naturally by the unsupervised
feature engineering protocols employed in our work. The statistical
characterization using spatial auto-correlations enables a robust
method of differentiating microstructures, and identifying virtually
generated structures demonstrating the most similarity to the two
experimental scans. The efficiency of PCA in providing low-
dimensional representations can be seen in Fig. 4b, displaying
the explained variance of the first five basis vectors, where greater
than 98% is explained within the first four PC scores. While the vast
majority of variance is explained within the first few PCs, prior
work has demonstrated improvements in the accuracy of surrogate
models built with larger sets of PC scores [65,88,89,108–110].

3.3. Finite element model

Effective tensile uniaxial stress–strain response of various SVEs
considered in the microstructure ensemble were determined
through the use of the CDM model (described in Section 2.1)
implemented through a VUMAT user subroutine in the commercial
FE solver Abaqus/Explicit [103]. In the CDM model considered, Eq.
(3) provides mechanistic regularization ameliorating issues of
mesh dependence in the FE implementation [111]. During imple-
mentation this was verified through a mesh dependence study
on a simple hole in plate test sweeping from 2,154–600,420 ele-
ments with convergence in force–displacement curves throughout
loading. This regularization aids in addressing the formation of
localization bands, and prevents such continuous bands from
reaching the scale of the SVE. Inertial effects were found to be min-
imal and less than 0.5% of the strain energy during progressive
loading past an absolute strain of 0.1%, inducing minimal error
on the solution by use of this solver. Perfect contact between vox-
els associated with the two local states were considered in the
model as frictional forces occur at a lower length-scale in the mate-
rial hierarchy, namely, the individual fiber/interfacial level for
which energy dissipation processes are modeled approximately
through the CDM model. Loading was applied for all SVEs through
a relative displacement of 0.11 mm in the x1-direction imposed
across the SVE as periodic boundary conditions [112,113]. Similar
approaches have been extensively applied in prior literature in
the calculation of effective properties of SVEs [114–116]. First-
order homogenization of the effective strain, stress, and specific
strain-energy release rate were computed as

r ¼ 1
j S j

Z
rd j S j; e ¼ 1

j S j
Z
ed j S j ð21aÞ

Yb
a ¼

1
Tb

Z
YadT

b ð21bÞ

where the volume averages for stress and strain are performed over
the entire SVE, and the volume average for the strain-energy release
rate is performed over a specific subset of tows (this volume is
denoted as Tb). For the voxelated meshes used in this study, the vol-
ume averages are replaced by simple averages over the respective
sets of integration points. While the specified integrated damage
evolution of the CDM model in Eq. (3) is able to account for damage
saturation effects, it results in slow and incremental material soft-
ening where explicit consideration of individual cracks is not con-
sidered. This behavior precludes an adequate modeling of rapid
failure of the SVE. As such, in order to determine a predicted failure
strain from the FE simulations, it was assumed that the failure was
driven by rapid fracture of tows oriented predominantly in the load-
ing direction as a non-local failure criterion. Following classical
Fracture Mechanics approaches, material failure in our study was
9

defined by a critical value of the longitudinal strain-energy release
rate in the tows, Y1 (see Eq. (2)), denoted as Y1C [117]. Y1C is thus
incorporated as an additional model parameter into h. With the
8HS architecture and each SVE consisting of an 8-ply stack, an aver-
age of the 64 tows oriented in the loading direction were continu-
ously evaluated during progressive loading. This procedure
resulted in strain-energy evolution curves described by the quantity
YM

1 ¼ E Yb
1

	 

; the results for an exemplar microstructure are pre-

sented in Fig. 5.
This particular CDMmodel and the micromechanical failure cri-

terion implicitly present several limitations related to modeling
the behavior of CMCs. Specifically, the CDMmodel as implemented
does not exhibit coupling in damage evolution between various
damage modes, a phenomena readily observed in sequential mul-
tiaxial loading [68,118], precluding the capture of loading path
dependency with a specified form for damage evolution. Viscous
effects are also neglected, alongside the accumulation of residual
strain from internal fiber failures. In composites which exhibit
lower contrast in elastic properties on orthotropic planes of sym-
metry, the use of scalar damage variables associated with these
planes may also prove to be limiting. While the simple microme-
chanical failure criterion has demonstrated success in the predic-
tion of failure in CMCs [119] and polymer matrix composites
[120,121], it similarly demonstrates its own limitations, including
challenges in identifying the intrinsic length-scale over which Eq.
(21b)) is to be taken.

3.4. Three-step Bayesian framework

The main goal of this work is to demonstrate a novel Bayesian
framework for the microstructure-sensitive predictions of effective
tensile stress–strain curves and the strain to failure while account-
ing for uncertainty in the available experimental data (across both
the stress–strain responses as well as the microstructural domain).
Towards this goal, the uncertainty in the experimental measure-
ments needs to be propagated to the underlying CDM model
mesoscale parameters. In this study, this challenge is accomplished
by extending the previously developed Bayesian framework
[38,122] and formulating a novel three-step Bayesian framework.
In the first step, a surrogate model is built to capture the relation-
ship between the material microstructure and its effective
mechanical response, while explicitly considering all of the
unknown CDM parameters as regressors. In the second step, a pos-
terior is established on the unknown model parameters using the
available, and often limited, experimental dataset. This process
often needs to account for the uncertain or incomplete information
of both the material microstructures and their measured stress–
strain responses. The final step combines the results from both
prior steps, in marginalizing out the uncertainty of the model
parameters to provide microstructure-sensitive probabilistic pre-
dictions for new microstructures. This three-step workflow is suf-
ficiently general and can be applied to varied combinations of
microstructural classes and material physics (i.e., constitutive
models) of interest. In the present work, our focus will be exclu-
sively on the CDM model introduced in Section 2.1 for modeling
the nonlinear behavior of continuous fiber reinforced 8HS CMCs.
The microstructure-sensitive probabilistic prediction of tensile
stress–strain curves for new composite microstructures could be
expressed as

pðrM; eMf j a;rE; eEf ;a
EÞ ¼

Z
pðrM; eMf j h;aÞpðh j rE; eEf ;a

EÞdh ð22Þ

where rE 2 RN represents a discretized vector of N experimentally
measured stress values corresponding to e 2 RN denoting a pre-
scribed vector of N strain values (usually taken to be uniformly dis-



Fig. 5. Evolution of strain-energy release rate as a function of the imposed
macroscale strain. The lighter blue lines present the evolution of Y1 for individual
tows (normalized by the inferred MAP value of Y1C , denoted as YMAP

1C ), while the
darker dashed line presents the volume averaged response in the longitudinal tows
(parallel to the loading direction).
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tributed over the desired range of strain values), eEf denotes the

experimentally measured failure strain, aE the vector of PC scores
quantifying the microstructures obtained from lCT experimental
scans, e is the vector of PC scores quantifying the new microstruc-
ture for which predictions are to be made, and h denotes the vector
of CDM parameters introduced in Section 2.1. rM and eMf represent

similar quantities as rE and eEf , but from model predictions. Impor-
tantly, Eq. (22) implicitly assumes that the constituent material
properties, h, are unaffected by changes in the microstructure mor-
phology, such that the identified posterior distribution
pðh j rE; eEf ;aEÞ can be applied to new microstructures. In order to
perform the operation specified in Eq. (22), a forward model pre-
dicting discretized stress values alongside a failure strain, defined
as rM and eMf , with the subscript (M) denoting a model output, must
be established. This surrogate model would output a distribution
pðrM ; eMf j h;aÞ, which might then be used in performing Bayesian

inference to identify pðh j rE; eEf ;aEÞ. Based on the description in Sec-

tion 3.3, the prediction of pðrM ; eMf j h;aÞ is the result of a simple

transformation of pðrM ;YM
1 j h;aÞ utilizing Y1C as a stochastic model

parameter. There are two major challenges to the practical imple-
mentation of Eq. (22). First, the training of the surrogate model
pðrM ; eMf j h;aÞ would require a large dataset covering the exceed-
ingly high-dimensional joint product space spanned by both a
and h (this includes the 12 CDM model parameters, the critical
strain-energy release rate, Y1C , and all principal components of
the tow auto-correlations considered in the model building),
demanding excessive or even prohibitive computational resources.
Second, a sufficient number of lCT experimental scans would be
necessary to have confidence that the distribution pðaEÞ is ade-
quately characterized. This is because significant variations are
expected between microstructures at different locations even
within an individual composite panel. Indeed, this can be seen in
Fig. 4, where the two experimental microstructures from the same
panel do not lie directly upon each other. Conceptually, it should be
understood that these individual measurements (visualized in the
low dimensional PC space shown in Fig. 4) essentially reflect sam-
pling of the underlying microstructure represented by the distribu-
tion pðaEÞ [87]. In order to circumvent the challenges described
above, Eq. (22) is reformulated as
10
pðrM ; eMf j a;rE; eEf ;a
EÞ ¼

Z
pðrM ; eMf j h;aÞ

Z
pðh j rE; eEf ; ~aÞpð~a j aEÞd~a

� �
dh

ð23Þ

to permit a more practical computational strategy. The main steps
of the proposed protocol entail:

1. Estimate the experimental microstructure conditional distribu-
tion pð~a j aEÞ, where ~a represents the elusive underlying
microstructure in the experiments (represented by a vector of
its PC scores). This is accomplished through suitable sampling
of the digitally generated microstructure ensemble for this
study. Produce reduced-order SV-MOGPs capturing
pðrM ; eMf j h; ~aÞ using the approaches described in Section 2.4.

2. Compute the posterior distribution pðh j rE; eEf ; ~aÞ by Bayesian
inference using the Affine-Invariant MCMC algorithm described
in Section 2.2.1. Note that the use of surrogate models devel-
oped in Step 1 are critical for enabling this step.

3. Produce updated reduced-order SV-MOGPs pðrM; eMf j ~h;aÞ,
where ~h represents the subspace of h supported by the posterior
pðh j rE; eEf ; ~aÞ established in Step 2, and incorporated these
updated surrogate models in computing the outer marginaliza-
tion in Eq. (23).

A visual depiction of the protocol described above can be seen
in Fig. 6. This protocol promises to address the multiple major chal-
lenges encountered in enabling probabilistic microstructure-
sensitive predictions given sparse experimental data. These
include (i) the consideration of the extremely high-dimensional
product space of fh;ag, (ii) the high cost of obtaining experimental
microstructure information, and (iii) linking the stochastic treat-
ment of constitutive model parameters across hierarchical
microstructural length-scales. Most importantly, the protocol
described above allows practical consideration of the extremely
high-dimensional product space fh;ag through the incorporation
of information contained in the limited, incomplete, and uncertain
experimental data available. For the present problem, this was
accomplished by first limiting the consideration of the microstruc-
ture subspace to a limited neighborhood near experimental obser-
vations, establishing the posterior for the model parameters, and
then expanding the microstructure space to cover the full region
of interest.
4. Results and discussion

4.1. Initial SV-MOGPs

As noted in the previous section, initial SV-MOGPs are needed
to provide predictions of pðrM; eMf j h; ~aÞ, for which it is necessary
to estimate the subset of microstructures characterizing the exper-
imental microstructure conditional distribution pð~a j aEÞ. In the
MKS framework, this is easily accomplished by identifying virtual
microstructures exhibiting similar low-dimensional 2-point spatial
correlations representations to the experimental microstructure
scans. Note that the transformation through PCA preserves dis-
tance, involving solely a pure rotation, and any error in representa-
tion is introduced only in the truncation of the PC basis
representing the data [123,124]. As the PC basis is optimized for
the capture of variance, the truncation level can be set to ensure
a minimal acceptable error in the estimated distances between
the microstructures in the truncated low-dimensional PC space
[123,124]. In this study, the distribution pð~a j aEÞ was approxi-
mated by sampling the digitally generated microstructure ensem-
ble (Section 3.2) and ranking according to the expression



Fig. 6. Depiction detailing the main steps involved in the stochastic scale-bridging framework.
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kai � aEk2, where ai denotes the vector of PC scores for the digitally
generated microstructure i, and aE ¼ E½aE� (i.e., aE was identified as
the mean of the spatial correlations of the two lCT experimental
scans). Sampling was performed using a half-Gaussian distribution
HNð0;3:16Þ, where the standard deviation was selected to repre-
sent the distance to the closest microstructure from the generated
ensemble3. The subset of digitally generated microstructures
exhibiting significant values of pð~a j aEÞ were then combined with
h values sampled with a Maximum Projection Latin hypercube
design (MaxPro-LHD) [125,126] to identify the training and test
datasets (total size of 2,000 Abaqus simulations) for building the ini-
tial SV-MOGP models in Step 1 of the protocol. MaxPro-LHD schemes
provide for space-filling properties into lower dimensional projec-
tions, which are particularly advantageous in cases where only a
few dimensions are expected to be active.

In order to provide predictions of pðrM ; eMf j h; ~aÞ, SV-MOGPs

were constructed for the stress array, pðrM j h; ~aÞ and the mean
tow specific strain-energy release rate array, pðYM

1 j h; ~aÞ, where
the latter can provide predictions of the failure strain as
3 This process represents a method for implementing ~ai ¼ aE þ ni where
knik2 � HNð0;3:16Þ in a setting with discrete options for ~ai .
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pðeMf j h; ~aÞ through a transformation involving the critical longitu-
dinal strain-energy release rate, Y1C . Both SV-MOGP surrogate
models were trained for 20,000 epochs with the RMSProp opti-
mizer [127], utilizing a 80/20 train/test split, 40 latent GPs (L), 80
inducing points (Z), and cosine annealing of the learning rate.
The predictive capabilities of these SV-MOGPs are illustrated in
Fig. 6, with the model performance of pðrM j h; ~aÞ particularly high-
lighted. Predictions of the surrogate model pðYM

1 j h; ~aÞ are shown
for exemplar sets of h in Fig. 7b. For each of the trained models,
mean error metrics across the predicted arrays are shown inlaid
in the respective Figs. 6a and 6b. Additional model error metrics
are shown in Fig. 7c showing the NMAE calculated at each point
in the predicted array for the model pðrM j h; ~aÞ. Fig. 7c demon-
strates the degradation in surrogate model predictions where an
increasing number of sampled test points of h exhibit material
softening.
4.2. CDM Model parameter posterior distribution

Equipped with both SV-MOGP surrogate models established in
Section 4.1, a likelihood could be established for Bayesian inference
defined in the second step of the proposed protocol as



Fig. 7. Performance of SV-MOGPs for the prediction of tensile stress–strain curves and strain energy release rate. (a) Probabilistic prediction with pðrM j h; ~aÞ conditioned
upon 10 sets of h from the test set along with mean error metrics of mean prediction for both training and test sets. (b) Probabilistic prediction with pðYM

1 j h; ~aÞ conditioned
upon 10 sets of h from the test set along with mean error metrics of mean prediction for both training and test sets. (c) NMAE for pðrM j h; ~aÞ corresponding to the strain array
values used in this study. (d) Parity plots at three selected values along the predicted stress–strain curves. Prediction of 	2:0r confidence intervals are displayed in these
parity plots.
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pðrE; eEf j h; ~aÞ ¼
1

ð2pÞðNþ1Þ=2 ffiffiffiffiffiffiffiffiffij K jp exp �1
2

E
rE

eEf

" #
� rM

eMf

" # !>"

� K�1 E
rE

eEf

" #
� rM

eMf

" # !#
ð24Þ

where K ¼ diagðRE þ RMÞ, with RE denoting the covariance matrix
directly computed from experimental observations, and RM the con-
structed covariance matrix utilizing the posterior predictive distri-
bution of both SV-MOGP surrogate models. The main diagonal of
the covariance matrices is considered in isolation due to the
assumption of uncorrelated heteroscedastic noise in the experimen-
tal measurements. This likelihood naturally arises from the govern-
ing statistical model defined in Eq. (7) considering Gaussian noise.
Importantly, the selection of SV-MOGPs as the surrogate models
in this work is particularly advantageous as GPs provide prediction
uncertainty estimates which can be incorporated into the likelihood
covariance structure [77,76]. Utilizing the notation introduced in
the above discussion, Bayes’ theorem could be expressed for this
application as

pðh j rE; eEf ; ~aÞ ¼
pðrE; eEf j h; ~aÞpðhÞR
pðrE; eEf j h; ~aÞpðhÞdh

ð25Þ

A combination of uninformative uniform prior distributions
alongside informative Gaussian distributions were incorporated
into pðhÞ. These univariate priors are summarized in Table 2, where
distributions for initial strengths fXt

t1;X
t
t2=3;X

m
t1=2;X

m
t3g were

informed by the works of Almansour [128], Jacques et al. [129],
Morcher et al. [9], and Bansal and Lamon [7].
12
The Affine-Invariant MCMC algorithm was used to establish
the posterior distribution of the complete set of CDM model
parameters. The posterior was estimated using 200 walkers and
sampling for 400,000 iterations with an acceptance rate of 15%.
The walkers were initialized randomly within support of the prior
distribution and the likelihood function evaluated through
repeated calls of the two SV-MOGP surrogate models. Convergence
of MCMC sampling was evaluated through stabilization of the
mean of all chains evaluated through trace plots and the mean esti-
mated integrated autocorrelation time (final value of 4,600 across
all dimensions sampled). 100,000 iterations were removed as
burn-in and the remainder of the chains kept as the final result.
Trace plots can be seen in Fig. 8a demonstrating stabilization of
the mean across all chains. The sampled 200 chains were thinned
by a factor of half the mean estimated integrated autocorrelation
time and stacked, where the resulting posterior distribution can
be visualized in a scatter plot matrix in Fig. 8b. The marginal distri-
butions on the main diagonal intuitively display the degree of cer-
tainty regarding each damage parameter, while the off-diagonal
displays projections of the posterior.

From closer inspection, parameters which heavily influence
behavior of the SVE in the main loading direction such as
fXt

t1;n
t
1; b

t
1;X

m
t1=2;n

m
1=2; b

m
1=2g (i.e., parameters controlling in-plane

effective matrix behavior and tow on axis behavior) are more read-
ily identified while others, such as matrix out-of-plane properties
fXm

t3;n
m
3 ; b

m
3 g are poorly identified as loading in-plane provides little

information to reduce uncertainty on these parameters. Summary
statistics of the posterior estimate are provided in Table 3.

The posterior distribution was then sampled, passed through
the two forward models (SV-MOGP surrogate models), and



Table 2
Prior distributions applied to the 13-dimensional damage model parameter vector.
Superscripts denote tows (t) or matrix (m) and the subscripts identify the principal
material axes to which the parameter is applied. U denotes the uniform distribution,
and Xt=m

ta values are in MPa.

h pðhÞ

Xt
t1 Nð350;100Þ

nt
t1 Uð0:01; 0:3Þ

btt1 Uð1;50Þ
Xt
t2=3

Nð50;50Þ
nt
t2=3 Uð0:01;5:0Þ

btt2=3 Uð0:01;100Þ
Xm
t1 Nð50;50Þ

nm
t1 Uð0:01; 0:8Þ

bmt1 Uð0:01;2:0Þ
Xm
t2=3 Nð15;15Þ

nm
t2=3 Uð1;2Þ

bmt2=3 Uð0:1;30Þ
Y1C Uð0;40Þ

Table 3
Statistical measures of marginalized posterior distributions including the mean,
standard deviation, skewness, and kurtosis. All values are normalized by the
corresponding MAP value for each parameter.

h Mean Std. Dev. Skew. Kurt.

Xt
t1

1.159 0.259 0.109 �0.042
nt
t1 1.086 0.255 0.877 0.985

btt1 1.544 0.600 0.089 �1.091
Xt
t2=3

0.718 0.397 �0.018 �1.155
nt
t2=3 0.927 0.474 �0.018 �1.125

btt2=3 1.894 0.933 0.078 �1.122
Xm
t1 1.175 0.396 �0.612 �0.107

nm
t1 1.068 0.456 1.751 3.920

bmt1 0.809 0.403 0.309 �0.781
Xm
t2=3 0.787 0.422 �0.027 �1.172

nm
t2=3 0.987 0.187 0.018 �1.180

bmt2=3 1.360 0.760 �0.015 �1.196
Y1C 1.138 0.358 1.238 8.632
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displayed against the experimental stress–strain curves in Fig. 9. A
total 10,000 samples were used in Fig. 9a. The distribution of the
strain to failure (Fig. 9b) reflects the assumed Gaussian distribution
of the experimental results.

4.3. Microstructure-sensitive probabilistic prediction

The third step in the three-step Bayesian calibration procedure
involves refining the domain of h to the subspace ~h, informed
Fig. 8. Inferred 13-dimensional posterior distribution estimate of CDM model parameter
demonstrating convergence of the mean in red. (b) Scatter plot matrix of the posterior
parameters are normalized by their respective MAP value. Contours denote the 0:5r;1:0r
by Foreman-Mackey [130].
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through the posterior identified in the second step, pðh j rE; eEf ; ~aÞ,
and displayed in Fig. 8b. This information is then utilized to
produce the previously intractable final grouping of surrogate
models for the prediction of pðrM ; eMf j a;rE; eEf ; ~a; ~hÞ.

The mechanics of forming the training data for these models
consists of establishing the desired joint distribution
pðh;a j rE; eEf ; ~aÞ through the previously sampled points defining
s of microstructure constituents. (a) Trace plots from MCMC sampling of all walkers
distribution, with the maximum a posteriori (MAP) value highlighted in blue. All
;1:5r, and 2:0r confidence intervals. Plotting was performed with a Python package



Fig. 9. Forward propagation of 10,000 samples from the posterior distribution through both SV-MOGP surrogate models. (a) The sampled stress–strain curves are plotted in
blue, along with the curve resulting from the MAP vector in red and the experimentally observed response in black. (b) Histogram of strain to failure obtained from the
propagation of sampled values of Y1C .
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the posterior of model parameters, and the individual points in the
principal component space defining the microstructure ensemble.
In order to form this distribution, compaction of the constituent
damage parameter posterior, consisting of 46,200 unique samples
was performed through the use of support points (described in
Section 2.2.2), resulting in 1,500 support points summarizing the
distribution. With equivalent numbers of points characterizing
Fig. 10. Illustration of establishing an estimate of the joint distribution pðh;a j rE ; eEf ; ~aÞ. (
support points. (b) distribution of principal components of 2-point spatial correlations of
Compact representation of joint distribution of microstructure and posterior of CDM mo
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both the distributions pðh j rE; eEf ; ~aÞ and pðaÞ, an outer product

could be performed to generate an estimate of pðh;a j rE; eEf ; ~aÞ.
The identification of support points was performed once more to
reduce the dimensionality of the joint distribution,
pðh;a j rE; eEf ; ~aÞ from 2,250,000 points to 2,000. This process is
illustrated in Fig. 10, where Fig. 10a displays a scatter plot matrix
a) Compact representation of posterior of CDM model parameters through the use of
microstructure ensemble (restricted to 5 principal components for visual clarity). (c)
del parameters.



Fig. 11. Performance of the final SV-MOGPs built for the prediction of tensile stress–strain curves and strain energy release rate. (a) Probabilistic prediction with pðrM j h;aÞ
conditioned upon 10 sets of fh;ag from the test set along with mean error metrics of mean prediction for both training and test sets. (b) Probabilistic prediction with
pðYM

1 j h;aÞ conditioned upon 10 sets of fh;ag from the test set along with mean error metrics of mean prediction for both training and test sets. (c) NMAE for pðrM j h;aÞ
corresponding to the strain array values used in this study. (d) Parity plots at three selected values along the predicted stress–strain curves. Prediction of 	2:0r confidence
intervals are displayed in these parity plots.

4 Denotation of expectation in distance metrics of selected microstructures to E½aE �
and E½~a� in Fig. 12 has been omitted for notational clarity.
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of the compact representation of the CDM model parameter poste-
rior shown in Fig. 8b, and Fig. 10c displays the compact result of
the product of the two independent distributions providing the
desired joint pðh;a j rE; eEf ; ~aÞ.

The 2,000 support points constituting the multi-dimensional
joint distribution in Fig. 10c could then finally be treated as indi-
vidual training data points for which Abaqus input files could be
generated. In a similar fashion to the first step of this Bayesian
workflow, the result of the FE-simulations provided training data
encompassing both homogenized stress–strain curves alongside
evolution of the strain energy release rate for tows predominantly
oriented in the direction of loading. These final two SV-MOGP sur-
rogate models were also trained for 20,000 epochs with the
RMSProp optimizer [127] utilizing a 80/20 train/test split, 40 latent
GPs (L), and 80 inducing points (Z). The predictive accuracy of these
models is depicted in Fig. 11. The input vector for these models
comprised the 12 initial CDM model parameters (with Y1C

excluded as it contains no predictive information for either model),
and the first 10 principal components of the 2-point spatial
correlations.

The SV-MOGPs could then be used to evaluate the right-hand
side of Eq. (23) for a given microstructure, utilizing the support
points which capture the posterior distribution of CDM model
parameters, pðh j rE; eEf ; ~aÞ. This process provides the desired prob-
abilistic prediction of tensile stress–strain response and failure
strain, conditioned on the limited available experimental data.
Example predictions for microstructures selected from the digitally
created ensemble of microstructures are shown in Fig. 12. The dis-
tance of all microstructures selected from ~a and aE is shown inlaid
directly above each microstructure cross-section, where in partic-
ular, microstructure #645 demonstrates markedly similar 2-point
15
spatial correlations to the experimentally observed lCT scans. This
similarity through minimal distance in principal component space
of the 2-point spatial correlations can also be observed in Fig. 4.

For each of the sampled microstructures from the ensemble it
can be observed that the predicted distributions encompass the
evaluated FE-simulated results, where the FE-simulation results
displayed are for a single instantiation of the CDM model parame-
ter vector from the posterior identified in Task 2 of the Bayesian
workflow. Uncertainty in the CDM model parameters as inferred
from the initial macroscale uniaxial stress–strain curves, and the
effect of this uncertainty on constituent damage evolution is read-
ily apparent in the increasing 	2:0r bounds during progressive
loading of all microstructures. It is rather interesting to note that
these prediction uncertainty bounds are not strongly correlated
with similarity to the expected value of either ~a, or aE 4. While
microstructures such as #952 are clearly markedly different to ~a,
demonstrating increasing uncertainty in response, others such as
#27 are similarly different from ~a while providing predictions with
similar uncertainty to #645. This behavior demonstrates the ability
of the second grouping of SV-MOGPs to learn the complex relation-
ship mapping the joint space of fh;ag to the corresponding uniaxial
tensile response, and the ability to utilize this gained knowledge in
marginalizing out the identified posterior pðh j rE; eEf ; ~aÞ in making
final microstructure-sensitive predictions.



Fig. 12. Microstructure-sensitive probabilistic prediction of stress–strain curves for the 3 identified microstructures in Fig. 4, shown in the top row, alongside 6 randomly
sampled microstructures. X � Z cross-sections of evaluated microstructures are shown in-laid with prediction alongside distance in principal component space to ~a and aE .
The mean stress–strain prediction is shown in red, with 	2:0r bounds shown in blue and the mean failure strain prediction is denoted by a cross, with 	2:0r bounds by dots.
The FE-simulated response for a singular instantiation of h from the identified parameter posterior distribution is shown in a dashed black line.
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5. Conclusions

A stochastic scale-bridging framework has been presented and
demonstrated for the robust formulation of high-fidelity proba-
bilistic surrogate models for the microstructure-sensitive predic-
tion of effective stress–strain curves in woven composite
architectures. Importantly, this framework presented several key
ideas and practical simplifications enabling the propagation of
uncertainty in macroscale experimental data, to mesoscale con-
stituent damage evolution, and finally incorporating this informa-
tion in low-cost macroscale microstructure-sensitive predictions of
uniaxial tensile response. Chief of which includes an assumption of
independence between constitutive model parameters and
microstructure for a limited microstructural class. This assumption
enabled the decomposition of the coupled stochastic inverse prob-
lem into one which could be approached in a sequential manner
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independently. The first portion of the proposed framework
revolves around approximating the experimental microstructure
generative function in the space of 2-point spatial correlations.
Samples of this approximation enable the production of a surro-
gate model, as the microstructural domain is significantly con-
strained while there still exists significant uncertainty over the
constitutive model parameters. Secondly, this surrogate model is
then leveraged to infer a posterior of model parameters condi-
tioned upon the observed macroscale experimental data. Lastly,
this posterior of constitutive model parameters is then used to pro-
duce a second surrogate model covering a domain of constitutive
model parameters constrained to the previously identified poste-
rior, with microstructures sampled from the wider available
ensemble.

At a higher level, the main contributions of this work are two-
fold. Firstly, the framework enables the statistical calibration of
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constitutive model parameters at lower length-scales than the
observed experimental data while accounting for experimental
microstructure uncertainty. This is practically relevant as often
experimental measurement techniques at lower length-scales are
either non-existent, or exhibit impracticable large amounts of scat-
ter. While this portion of the work was solely demonstrated for a
single dataset consisting of uniaxial tensile stress–strain curves,
the framework naturally allows for expansion to heterogeneous
experimental datasets. One might imagine such datasets may lead
to a sharpening of the posterior distribution, reflecting increased
knowledge over such parameters. Secondly, the framework pro-
vided for a manner in propagating this inferred distribution at a
lower-length scale towards higher length-scale probabilistic pre-
dictions of alternate microstructures. The prior assumption of
independence between the identified posterior distribution and
microstructure presents a limitation at this juncture. Through pro-
viding predictions by marginalization, an implicit assumption is
made in which the constituent spatial arrangement of new
microstructures for which predictions are sought, is sufficiently
similar to the experimental microstructure, such that the local
material response does not differ significantly from the observed
experiments. This requires that the second portion of this frame-
work be applied to microstructure ensembles in a narrow material
class, while the first portion is sufficiently general.

As a whole, the presented framework permits the transforma-
tion of an initially intractable problem, namely, the development
of a surrogate model jointly covering both the microstructure
and constitutive model parameters input spaces, into one which
is feasible computationally. Importantly, this work significantly
weakens prior assumptions often present in hierarchical modeling
through providing a method for stochastic bi-directional informa-
tion flow across length-scales rather than deterministic assign-
ment of material properties at the lowest length-scale considered
in the hierarchy.
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Appendix A

Further details regarding the surrogate model architecture uti-
lized in this work can be found in this section. Utilizing the same
notation presented in Section 2.4, the finite dimensional GP is dis-
tributed as

pðy j X; hkÞ ¼ Nð0;Kff þ r2
yIÞ; Kff½ �nn0 ¼ kðxn; x0nÞ: ðA:1Þ

As mentioned previously, GP regression with small dimensional
datasets provides a robust method of learning latent functions. The
limitation in scalability presents itself with the computation of the

inverse covariance matrix, Kff þ r2
y I

h i�1
, scaling as OðN3Þ time and
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limiting its practicality when confronted with large datasets.
Sparse approximations to this Gaussian process primarily rely
upon developing methods of approximating this covariance
matrix through the use of inducing points, or pseudo-inputs,
enabling cost OðNM2Þ. Methods of this include the Deterministic
Training Conditional (DTC) [131], the Fully Independent Training
Conditional (FITC) [132], and the Variational Free Energy [93]
approximations. Differences between these methods depend
upon where the sparse assumption is made, where DTC and FITC
make simplifying assumptions regarding dependencies in the
training data, leading to an approximate generative model
(through modifying the prior and space of functions considered),
with the benefit of being able to perform exact inference. Detri-
mentally, this approach does not provide any distance metric
between the exact non-sparse model and the final generated
model, and the learning of inducing input locations through
the likelihood can perform poorly (e.g. DTC is prone to overfit-
ting even when M 
 N [133]). The more elegant VFE incorpo-
rated in this work, pushes the approximation towards the time
of inference and enables computation of the exact model. As
mentioned in Section 2.4, the covariance function hyperparame-
ters and inducing inputs are jointly optimized by maximizing a
lower bound to the exact marginal likelihood, where the induc-
ing input locations are considered to be variational parameters
selected through minimization of the KL-divergence between
the variational GP and the true posterior GP. This lower bound
to the exact marginal likelihood can be expressed using a distri-
bution qðf Þ over the entire infinite dimensional function as

logpðy j hkÞ ¼ log
R
pðy; f j hkÞdf P Fðq; hkÞ

¼ R qðf Þ log pðy;f jhkÞ
qðf Þ df ¼ Eqðf Þ log

pðy;f jhkÞ
qðf Þ

h i ðA:2Þ

where no limiting assumptions have been made regarding the form
of qðf Þ. Alternatively, this VFE bound can be written as the differ-
ence between the model log-marginal likelihood and the KL diver-
gence between the variational posterior and true posterior as

Fðq; hkÞ ¼ log pðy j hkÞ � DKLðqðf Þkpðf j y; hkÞÞ ðA:3Þ
where the bound is maximized when qðf Þ ¼ pðf j y; hkÞ. The reduc-
tion in computational complexity is achieved through the identifi-
cation of a small set of M 6 N inducing points Z ¼ fzmgMm¼1 which
are independent of X, in order to provide a lower rank approxima-
tion to the full covariance Kff . The corresponding function values
at these inducing points are then denoted as u. The disjoint infinite
dimensional function can then be represented as f ¼ fu; f–ug, with
an approximate posterior distribution of
qðf Þ ¼ qðu; f–u j hkÞ ¼ pðf–u j u; hkÞqðuÞ (it should be highlighted,
there is a slight abuse of notation using q to denote the variational
distribution over both the infinite dimensional latent function and
the finite dimension inducing values). Under this approximation,
f–u is only influenced through the inducing points and not the data
directly. This approximate posterior simplifies the VFE bound
defined in Eq. (A.3) to that with only OðNM2Þ cost as

F q; hkð Þ ¼ Eq f jhð Þ log
p yjf ;hkð Þp ujhkð Þ

q uð Þ

h i
¼ PN

n¼1
Eq f jhð Þ p yn j f n; hkð Þ½ � � DKL q uð Þkp u j hkð Þð Þ:

ðA:4Þ

Maximization of this bound with respect to the variational pos-
terior can be performed in closed form, with the optimal q� unsur-
prisingly also being Gaussian and expressed as

q�ðf j hkÞ ¼ argmax
q

Fðq; hkÞ

¼ Nðf ;Q f f
bK�1ff y;Kff � Q f f

bK�1ff Q ff Þ ðA:5Þ
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where K̂ff ¼ Qff þ r2I, and Qff ¼ KfuK
�1
uuKuf provides the low rank

approximation. For clarity, elements of the covariance matrices
are calculated as Kuu½ �mm0 ¼ k zm; zm0ð Þ and Kfu½ �nm0 ¼ k xm; zm0ð Þ. The
optimal VFE bound utilizing the variational distribution identified
in Eq. (A.5) is then

Fðq�; hkÞ ¼ �N
2
logð2pÞ � 1

2
log K̂ff




 


� 1
2
y>K̂�1ff y

� 1
2r2

y
trðKff � QffÞ ðA:6Þ

which can then be optimized with respect to the covariance func-
tion hyperparameters, hk. Importantly, this VFE bound contains a
trace term which is missing from the DTC method discussed earlier,
resulting in a penalty term preventing the known problems with
overfitting present in the DTC method.
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