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Abstract

Inverse problems are central to material design. While numerous studies have
focused on designing microstructures by inverting structure–property linkages for
various material systems, such efforts stop short of providing realizable paths
to manufacture such structures. Accomplishing the dual task of designing a
microstructure and a feasible manufacturing pathway to achieve a target property
requires inverting the complete process–structure–property linkage. However, this
inversion is complicated by a variety of challenges such as inherent microstructure
stochasticity, high-dimensionality, and ill-conditioning of the inversion. In
this work, we propose a Bayesian framework leveraging a lightweight flow-
based generative approach for the stochastic inversion of the complete process–
structure–property linkage. This inversion identifies a solution distribution in
the processing parameter space; utilizing these processing conditions realizes
materials with the target property sets. Our modular framework readily
incorporates the output of stochastic forward models as conditioning variables for
a flow-based generative model, thereby learning the complete joint distribution
over processing parameters and properties. We demonstrate its application to the
multi-objective task of designing processing routes of heterogeneous materials
given target sets of bulk elastic moduli and thermal conductivities.
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1 Introduction

The problems of material discovery, development, and deployment have historically been posed in
the form of inverse problems [1] – mathematical challenges which repeatedly appear across almost
every discipline [2–9]. In the context of materials, the primary challenges involve mapping between
the spaces of material processing parameters Ω1, microstructures Ω2, and resulting functional
properties Ω3. This introduces the notion of process–structure (PS) and structure–property forward
linkages, which we denote as G : Ω1 → Ω2 and F : Ω2 → Ω3. However, the underlying goal
of inverting the relationship between processing and property, remains an open problem. This
composite relationH = F ◦ G : Ω1 → Ω3 is commonly referred to as a process–structure–property
(PSP) linkage.

It is impossible to disentangle material microstructures from how they deform, and consequently
their bulk properties and performance. Unfortunately, consideration of microstructures
introduces significant complexities to materials-specific inverse problems [1, 10]. First, material
microstructures are complex hierarchical stochastic systems spanning a wide range of length-
scales [11, 12]. Across these length-scales, the evolution of local material states during processing
steps, as well as their bulk response to external stimuli, are highly nonlinear and stochastic in nature
[13–20]. Second, microstructure representation is inherently irregular and high-dimensional [21],
such that any PS, G(·), or SP linkage, F(·), would necessarily need to be capable of modeling
or approximating this behavior across high-dimensional domains. Taken as a whole, these factors
result in an ill-posed and unstable composite inversion problem. In the presence of such stochastic
forward models, the problem is more formally known as a stochastic inverse problem [22].

As a direct result of these challenges, current works have primarily focused on inverting individual
SP linkages [23–30]. Even these works have achieved significant advancements over traditional
approaches [15, 31, 32] through their use of distributional deep learning [33–38]. By learning a
mapping of individual samples from the complex, irregular microstructure space to a topologically-
well-structured, continuous latent space, traversal of this latent space can lead to the identification
of unique and undiscovered materials. However, these current approaches rarely account for
microstructure stochasticity. Further, learned latent spaces lack any particular domain knowledge
or physics-supported topology (e.g., they do not naturally account for underlying symmetries)
[23, 24, 26–30, 39]. Altogether, these limitations add unnecessary complexity into the generative
model in order to distinguish between statistically-identical microstructures. Most critically, these
approaches only partially solve the problem at hand; while knowledge of property-conditioned
microstructures is certainly valuable, it does not provide any processing route for manufacturing
such target microstructures of interest. This secondary inversion is usually handled via a domain-
knowledge-dependent iterative search [14, 15].

In this work, we leverage several learning methods to efficiently solve the full PSP inverse problem.
Specifically, the inverse problem is posed and solved in a Bayesian setting, which naturally accounts
for stochasticity in the composite forward model and degeneracy in the inversion. The solution
is generated using amortized variational inference [40]. In order to disentangle the microstructure
space Ω2, we employ a statistical latent representation of microstructure, namely, 2-point spatial
correlations [41, 42]. Stochastic forward models are then constructed linking this representation to
both processing parameters (Ω1 → Ω2) and effective properties (Ω2 → Ω3). The inverse linkage
(Ω1 ← Ω3) itself is modeled using a conditional continuous normalizing flow, which is trained with
its conditioning variable taken as the property output of the chained stochastic forward models. Once
trained, this model can sample from the approximate posterior distribution of property-conditioned
processing parameters p(x|y), where y is a set of target properties and x is a set of processing or
manufacturing parameters. We conclude by applying the framework to the design of heterogeneous
microstructures produced by phase-field simulation [43] and provide statistical analysis of our
method’s overall performance and reliability.

2 Background

Phase-Field Modeling: Phase-field simulations are commonly applied to model a number of
manufacturing processes involving evolving interfaces (such as solidification/melting, spinodal
decomposition, grain growth, recrystallization, and crack propagation [44, 45]). In particular,
the Cahn-Hilliard equation is frequently used to describe spinodal decomposition, a spontaneous
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thermodynamic-instability-induced phase separation [46]; this partial differential equation models
a diffusion-driven process with a diffusivity constant D, driving the evolution of composition
variations, c, over characteristic length scales dictated by a gradient energy coefficient, γ. In our
problem the spatially-dependent composition will take the role of material microstructure.

δc

δt
= D∇2

(
c3 − c− γ∇2c

)
(1)

Gaussian Processes: Throughout this work, the forward mappings (PS and SP linkages) are
assumed to be stochastic, thus requiring forward uncertainty propagation. We approach this task
through the use of Gaussian processes (GPs), an expressive and flexible construct, defining a
distribution over a family of functions by describing their functional output covariance across the
input domain. This covariance necessarily dictates the resulting function characteristics, and is
constructed with a kernel function k(·, ·′). Provided observations {xn,yn}Nn=1 from an underlying
generating process, a conditioned distribution over the space of functions {x → y} can be
established, estimating the trend and the uncertainty of the data. For a more in depth discussion
we defer to [47, 48].

2-Point Spatial Correlations: This work uses 2-point spatial correlations [13, 14, 41] to construct
descriptive microstructure features. This representation builds on the idea that the microstructure
itself is a stochastic function, where individual observed microstructure instances are samples from
the governing stochastic microstructure function [41,42]. This theoretical treatment accounts for the
inherent stochasticity displayed by material microstructures, and allows for the underlying stochastic
function to be linked to homogenized properties. It also provides a convenient mechanism to account
for underlying symmetries (such as translation-equivarinace and periodicity).

In practice, 2-point spatial correlations can be computed as a convolution of the sampled discrete
microstructure function mα

s , where α is the material local state at voxel s. The resulting 2-point
spatial correlations are then defined by the operation

fαβ
r =

1

S

S∑
s=1

mα
sm

β
s+r (2)

where S defines the set of all voxels in the microstructural domain. These represent lower-order
terms in a moment expansion of the true microstructure random process; for a number of materials
systems, this term is dominant and captures most of the variation in bulk material properties.
Dimensionality reduction techniques can then be effectively applied to the ensemble of 2-point
spatial correlations to provide robust, information-dense features for the construction of PS and
SP linkages [16, 49–55].

Conditional Flow Matching: Continuous normalizing flows (CNFs) [37] are an expressive and
efficient method for density estimation which construct an invertible mapping between the standard
normal distribution and a given data distribution. The mapping itself is specified via the dynamics of
a neural ordinary differential equation (ODE) [37]. While these methods have historically exhibited
difficulties during training [56, 57], Conditional Flow Matching (CFM) [38] has emerged as a
powerful simulation-free technique for stabilizing the training of CNFs. This objective enables
training of the CNF without requiring internal calls to an ODE solver during the training phase,
instead matching the vector field of the conditional transport map.

3 Framework

In this section we propose a Bayesian Inversion [58] framework for solving the process-property
stochastic inverse problem. Figure 1 visually summarizes the overarching strategy. To begin, we
define notation specific to this particular problem. Inputs of the forward model are denote by the
vector of processing parameters θ ∈ RD, the target effective property vector is denoted by k ∈ RP ,
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Figure 1. Visual representation of proposed framework. The prior distribution in the first two
dimensions is invertibly transformed to the uniform distribution, which can then be sampled to
produce unique microstructure instantiations. This prior over processing parameters results in an
equivalent prior in microstructure space when phase-field simulations are performed. This latent
microstructure prior, alongside processing through quantification with 2-point spatial correlations
and PCA embedding is also shown. The likelihood is then defined as a composition of probabilistic
PS and SP linkages, which is subsequently used to perform amortized stochastic variational
inference (SVI). Lastly, the image of posterior samples under the (true) PS forward model is
displayed, demonstrating microstructure specificity to match target properties. H̃ denotes the
composite surrogate forward model, k the property set of interest, α the statistical low-dimensional
PC representation of microstructure, and m microstructure.

and intermediate (2D, in this work) microstructures are written m ∈ RL×L. Given an initial dataset
of processing parameter, microstructure, and property triples, {θn,mn,kn}Nn=1, we create tractable
estimations for the components of Bayes’ theorem necessary for computing the desired posterior
(e.g., p(θ), p(k|θ))1.

We note that a naïve approach to identifying the mappings G : θ → m and F : m → k
would necessarily traverse the high-dimensional stochastic microstructure space. This challenge
would only be amplified during the inversion. We address these issues directly by quantifying
microstructures through 2-point spatial correlations, and then embedding them into a lower-
dimensional manifold through Principal Component Analysis (PCA) [53, 59–61], retaining R
principal components (PC) scores (denoted α) as descriptors. Importantly, this physics-informed
R-dimensional representation has effectively demonstrated a robust ability of stratifying associated
properties in the first handful of terms [49–55], enabling us to move through a R-dimensional
microstructure space as higher-order terms result in minimal shifts in resulting properties. This
distillation of global microstructure information greatly simplifies the overarching inversion, as
identifying a distribution over the exceedingly high-dimensional microstructure space is wholly
unnecessary. Rather, we can traverse this compact representation of the microstructure random
process. Briefly, we note that this approach could potentially break down when the target properties
are the result of localized processes, such as fracture and fatigue resistance [62–65].

In summary, the proposed modular framework utilizes surrogate forward models G̃ and F̃ to train
a flow-based generative model to estimate the posterior mapping between desired properties and
processing parameters. This cooperative reformulation avoids the problem of inverting this mapping
directly from just data using solely a flow-based generative model, and instead provides a platform
for which to construct smaller forward models as a continuous source of training data for the CNF.

4 Experiments & Discussion

In order to validate the proposed framework, we apply it to two different materials systems
undergoing spinodal decomposition, with in depth analysis performed for two distinct test cases
per system, and subsequently, a more general validation procedure applied to the entire property
space. These two cases consist of (processing parameters, property) pairs denoted as {θ∗,k∗},

1A reference summary of notation used throughout this work is presented in Appendix D.
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Table 1. Summary of constituent property assignment for low- and high-contrast ratio cases,
displaying the isotropic elastic modulus (E), Poisson’s ratio (ν), and thermal conductivity (κ) of
the constituents considered.

Al-Si High-Contrast

E (GPa) ν κ (W/mK) E (GPa) ν κ (W/mK)

Constituent 0 70 0.33 247 1 0.3 100
Constituent 1 169 0.28 400 100 0.3 1

which we selected from a dataset of spinodal decomposition phase-field simulations. The
phase-field simulations take a 3-dimensional processing parameter input θ, dictating disparate
heterogeneous microstructure evolution pathways. The property set k considered includes both
effective anisotropic elastic moduli and thermal conductivity.

The two materials systems considered were chosen to evaluate model performance with varying
contrast between phases, as well as its ability to balance competing property targets. The low-
contrast case corresponds to the Al-Si alloy material system, which is physically realizable.
Conversely, the high-contrast case is a fictitious 2-element alloy in which the elastic and thermal
properties trade off (and vary heavily) between phases. It is important to consider multiple contrast
ratios because it has been well documented that PSP linkages become harder to construct with
higher contrast ratios [66]. A summary of the constituent material parameters can be found in Table
1. These stress tests were selected to best scrutinize the proposed approach across sparse regions of
the dataset and increasingly-complex material responses.

The dataset contains 10,000 two-phase microstructures of size 256 × 256 voxels, each associated
with processing parameters θ1 and θ2, sampled according to the log-uniform log(θ) ∼
U(log(0.1), log(100)), and θ3 ∼ U(−0.7, 0.7). These processing parameters correspond to
the mobility parameters of the two constituents (θ1, θ2), and initial relative concentrations (θ3).
Homogenized properties were extracted for each microstructure in the dataset through performing
finite element simulations with Abaqus/Standard [67]. Figure 2a visually summarizes the resulting
property set for these microstructures with Al-Si constituent property assignment and Figure 2b
with the high-contrast assignment. Figure 2c displays the microstructure ensemble in the first 4 PC
dimensions. The selected test cases are highlighted in each projection as p1 and p2.

Figure 2c illustrates projections of the microstructure ensemble in the first 4 PCs. Each
microstructure is statistically represented by a subset of its 2-point spatial correlations: we computed
{f00

r , f01
r } using Eq. (2), with the material local state indexed by {0, 1}. While this set of spatial

correlations provides a robust statistical description of internal microstructure arrangement, it also
doubles the dimensionality relative to the initial microstructure. As such, Principal Component
Analysis (PCA) was performed to reduce the dataset’s dimensionality, using a concatenated flattened
representation of {f00

r , f01
r }. Scaling factors were applied to the set as {f00

r , 26.389f01
r } to balance

contributions between auto- and cross-correlations so that neither set dominated the transformation.
Overall, Figure 2 highlights the motivation for selecting these particular test cases, with each selected
to balance coverage of the property space while simultaneously identifying sparse regions in PC
space.

4.1 Al-Si Alloy

After training, samples from the approximate posterior p(θ|k∗) were drawn from the CNF model
for both of the test cases, displayed in Figure 3. The marginal distributions in the log-space of the
processing parameters can be seen in Figure 3, where the processing parameter set θ∗ associated
with the conditioning property set k∗ is demarcated with a vertical line. Inspection of the posteriors
highlights that in the first case study, larger deviations in θ1 and θ2 can be tolerated, but extreme
specificity is required in θ3, which, notably, was found to be very near to zero. This observation
aligns with the fundamental dynamics of the Cahn-Hilliard phase-field model. When the order
parameter θ3 is near zero, signifying an almost equal fraction of both phases in the initial mixture,
the system experiences a heightened driving force for phase separation rendering it less sensitive
to mobility parameter discrepancies in the early stages of the microstructure evolution. As a result,
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Figure 2. Experimental dataset considered in this work with select microstructures identified as
test cases. (a) Property set of the low-contrast Al-Si microstructure ensemble, (b) property set of
the high-contrast microstructure ensemble, and (c) low-dimensional microstructure representation
in the first 4 PC dimensions.

Figure 3. Marginal posterior distributions for the two test cases p1 and p2 with the low-contrast
constituent property assignment. The first two dimensions of θ are displayed in the log-space.
Associated processing parameter sets θ∗ to the target property set k∗ are displayed as a black dashed
line.

even significant variations in the mobility parameters, θ1 and θ2, have a diminished impact on the
microstructure evolution. In contrast, the second case study posterior demonstrates significantly
more sharpening across the processing parameter domain, indicating that in sparser regions of the
microstructure and property spaces, a greater degree of specificity across all processing parameters
is necessary to meet the target property set. In each of the marginal posterior plots, the framework
was able to recover the latent θ∗ associated with the target property set.

Next, we interrogate how well the posterior predictions match the desired target property set. To
address this we draw 200 valid samples from the posterior p(θ|k∗)), and apply both the surrogate
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Figure 4. Marginal distributions of H(p(θ|k∗)) (ground truth forward model) for the two low-
contrast test cases p1 and p2 shown alongside the validation set of 200 processing parameters
sampled from the posteriors. The validation set was evaluated through phase-field and finite element
simulations.

and “ground truth“ composite forward models (H̃,H respectively) on each sample. Posterior
samples outside of the validity bounds of the phase-field model were rejected. The results of this
can be seen in Figure 4, where the property target falls well within the predicted distribution (for
both models). Additionally, the distributions of resultant properties match relatively well between
surrogate and true forward models.

4.2 High-Contrast Alloy

The low-contrast Al-Si test cases demonstrated that the framework is capable of adequately
identifying the processing parameter sets necessary to meet various target property sets. Due to
the higher contrast of the microstructures’ constituent properties and increasing nonlinearity of
their responses in this case study, we expect less variability in the distributions over processing
parameters and latent microstructure statistics. Such intuition is reflected in the resulting posteriors
p(θ|k∗), displayed in Figure 5. p1 demonstrates a departure from the low-contrast log-uniform, with
a preference towards lower mobility values (θ1 and θ2), while the posterior p2 remained roughly
equivalent to the prior case study due to its extremal location in the dataset.

Figure 5. Marginal posterior distributions for the two test cases p1 and p2 with the high-contrast
constituent property assignment. The first two dimensions of θ are displayed in the log-space.
Associated processing parameter sets θ∗ to the target property set k∗ are displayed as a black dashed
line.
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Figure 6. Marginal distributions of H(p(θ|k∗)) for the two high-contrast test cases p1 and p2
shown alongside the validation set of 200 processing parameters sampled from the posteriors. The
validation set was evaluated through phase-field and finite element simulations.

In a similar fashion to the prior case study, we turn towards inspecting the resulting property set
predictions of the processing parameter posterior. We apply the same methodology used for Figure
4 for the high-contrast case and present the results in Figure 6. Again, the target property vector
is recovered by both the surrogate and exact forward models. Interestingly, the surrogate model
over-estimates the variance in predictions k1 and k2 compared to the true model. We believe this
is caused by a degradation in performance of the SP linkage F̃ for thermal conductivities near the
homogeneous microstructure lower-property limit, as seen in Appendix A. Importantly, even with
this degradation in forward property prediction, the framework is capable of identifying promising
processing parameter sets in validation.

4.3 Validation Across Property Space

While utilizing these two selected test cases provided the opportunity for validation through the exact
forward process, it is limited by the computational cost of evaluating this process. Consequently,
the limitation to certain target property sets precludes a complete understanding of the frameworks
performance across the entire property space. In order to further explore framework performance,
we now turn towards identifying posterior solutions for every property set in the available dataset. In
this validation, we restrict our consideration to property values in the hold-out testing dataset from
training the forward models. 128 samples are drawn from p(θ|k∗) for every property value in the
dataset, and then each passed through the learned sparse variational multi-output Gaussian process
forward models H̃(p(θ|k∗)), such that for each target property set there now exists a distribution
of forward propagated samples from the corresponding solution posterior. This is practically useful
as it provides a method for directly and rapidly comparing the capabilities of the framework, while
providing a methodology for inspecting uncertainty in the identified solutions. Figure 7 displays
the results of this evaluation for both the low- and high-contrast applications where Figure 7(a) and
Figure 7(b) show parity plots colored by the estimated density, highlighting the accurate predictions
across the majority of the property space, particularly in the most dense regions. The shape of the
estimated cumulative distribution functions for each are overlaid in Figure 7(c) only reinforcing
this point. Degraded performance can be observed as we move towards lower-density regions of
the property space. Quite naturally, we also correctly observe an increase in uncertainty in such
extremal property sets – an early indication uncertainty in the framework is well calibrated.

4.4 Calibration

While the previous case studies indicate that our model captures the correct overall trends, the
question remains of how well the uncertainty in the estimated distribution matches that of the true
distribution; that is: is our model well-calibrated? The validity of the identified joint distributions
p(θ,k) = p(k|θ)p(θ) is explored through recent work by Säilynoja et al. [68]. This simulation-
based method evaluates the quality of a Bayesian analysis across the entire joint p(θ,k), sampling
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Figure 7. Forward mapping of inverse solutions for all property sets in the available dataset. (a)
Parity plot of all target property sets against 128 points propagated from the posterior solution,
(b) estimated density of the parity plot, (c) estimated cumulative distribution of Normalized Mean
Absolute Error (NMAE) over all propagated property sets with the 95th percentile highlighted.

Figure 8. Empirical cumulative distribution functions to asses uniformity of the samples for both
low- and high-contrast cases.

a ground truth from the prior θ̃ ∼ p(θ) and data from the likelihood k̃ ∼ p(k|θ). Evaluations
with these simulated pairs can then be used in evaluating the discrepancy between the data averaged
posterior and the prior through the following expression.

p(θ) =

∫
p(θ|k̃)p(k̃|θ̃)p(θ̃)dθ̃dk̃. (3)

The empirical cumulative distribution function (ECDF) graphical test for uniformity involves the
probability integral transform in comparing the data averaged posterior to the prior, providing an
intuitive methodology for evaluating the quality of a Bayesian analysis. A linear result is desirable.
The results of this procedure for both joints from the low- and high-contrast cases can be seen
in Figure 8, as well as 95% confidence intervals (based on a binomial distribution). Briefly, this
figure indicates that the model is well-calibrated in the low-contrast case, with discrepancies in the
fractional rank statistic for θ3 in the high-contrast posterior.
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5 Conclusions

We present a framework for addressing inverse stochastic materials design problems. The framework
provides a tool set for the designer to identify novel structures and identify distributions of processing
routes to realize such structures. We exhibit demonstrations of its utility on increasing challenging
test cases, and demonstrate that it provides well calibrated posterior predictions of processing
parameters. Due to its stochastic nature, this framework also provides a mechanism for Bayesian
model calibration, selection, and uncertainty quantification.
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Figure A.1. Parity plot of SV-MOGP forward models performance on the available microstructure
ensemble. Predicted ±2.0σ confidence intervals are displayed alongside mean predictions. (a) PS
linkage for first 5 PC scores, (b) SP linkage for Al-Si case, and (c) SP linkage for high-contrast ratio
case.

A Appendix: Forward Models

Process-structure (PS) and structure-property (SP) linkages for the Al-Si case were constructed with
a sparse variational multi-output Gaussian process (SV-MOGP) [69, 70], where the multi-output
covariance matrix was constructed with the Linear Model of Coregionalization (LMC) [71, 72] and
a spectral mixture kernel [73]. The intermediate microstructure representation consisted of 5 PC
scores due to signal decay and limitations of the PS linkage to accurately predict past this point.
The PS linkage was constructed with 800 inducing points, 5 latent processes, and 6 mixtures in the
SM kernel, while the SP linkage was defined through 160 inducing points, 5 latent processes, and
6 mixtures in the SM kernel. Each model was trained with 32 bit-precision for 4,000 epochs with a
minibatch size of 1024. Optimization of model parameters was performed with the Adam optimizer
and cosine annealing from an initial learning rate of 1e-2, ending at 1e-8.

Due to the increasingly complex material response in the high-contrast case, we found improved
performance for the SP linkage through the creation of a deep Gaussian process [74,75]. The model
consists of 3 layers, each constructed with a Matérn 5/2 kernel and 400 inducing points. Similarly,
the model was trained with the Adam optimizer and the same floating point precision, learning rate
schedule, and minibatch size for 2,000 epochs.

The available experimental dataset was partitioned into a 80/20 train/test split. Parity plots of each
model’s performance can be seen in Figure A.1, with corresponding error metrics in Table A.1. The
additional challenge of learning the complex nonlinear mapping between structure and property in
the high-contrast ratio case is clearly evident.

B Appendix: CNF Architecture

The architecture underpinning the CNF in both the low- and high-contrast cases was identified as
the result of an ablation study across 6 various architectures. Relatively simple architectures were
considered in this work, although we have no doubt that further refinement may be possible. Due to
the low-dimensional microstructure space considered, the architectures considered are significantly
more light-weight than similar models considered in other works [23, 24, 26–29], albeit no other
models exist which enable inversion of the complete PSP linkage. The networks and training settings
considered are displayed in Figure B.1. All models were trained with the Adam optimizer [76] and
32 bit-precision. Specifics regarding the architecture selected can be found in Table B.1. Training

11



Table A.1. Summary error metrics (Mean Absolute Error (MAE) and Normalized Mean Absolute
Error (NMAE)) of SV-MOGP forward model performance with reported mean and standard
deviation.

α1 α2 α3 α4 α5

MAE Train 3.396±8.458 0.377±0.515 3.376±4.401 4.133±5.727 4.348±6.119
Test 4.055±12.113 0.411±0.661 3.573±4.636 4.302±6.211 4.826±7.087

NMAE (%) Train 1.746±4.350 0.853±1.164 8.879±11.577 18.230±25.258 31.317±44.078
Test 2.086±5.809 0.929±1.164 9.400±11.577 18.975±27.394 36.447±51.054

E1 (GPa) E2 (GPa) G12 (GPa) k1 (W/mK) k2 (W/mK)

MAE Train 0.267±0.341 0.272±0.355 0.094±0.103 0.233±0.310 0.234±0.100
Test 0.272±0.345 0.262±0.336 0.094±0.101 0.231±0.299 0.232±0.304

NMAE (%) Train 0.247±0.315 0.252±0.328 0.228±0.249 0.074±0.098 0.074±0.100
Test 0.252±0.319 0.242±0.311 0.227±0.246 0.073±0.095 0.073±0.096

MAE Train 0.579±0.957 0.566±0.915 0.198±0.298 0.578±1.099 0.611±1.217
Test 0.744±1.381 0.777±1.481 0.264±0.464 0.896±2.279 0.838±2.071

NMAE (%) Train 2.990±4.945 2.923±4.726 2.760±4.159 2.241±4.423 2.348±4.713
Test 3.844±7.134 4.010±7.646 3.677±6.475 3.477±8.844 3.246±8.023

Table B.1. Summary of CNF model architectures considered.
Hyperparameter Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6

Depth 3 4 6 3 4 6
Width 128 128 128 256 256 256

was performed for 1000 epochs with a batch size of 1024 (9766 iterations), cosine annealing of
the learning rate from 1e − 3 to 1e − 8, an EMA decay rate of 0.9999, and σmin = 1e − 3. All
probability flow paths were solved for at t = 1 with the adaptive step size dopri5 solver and
tolerances atol = rtol = 1e− 5.

Model performance was evaluated for the low-contrast dataset for the purposes of architecture
selection. Posteriors were sampled for each conditioning property set available in the dataset, and
the NMAE evaluated across all samples. The threshold for the 95th percentile was also evaluated,
with the results of both across the architectures considered presented in Figure C.3. This process
is identical to the process laid out in constructing Figure 7. Architecture #5 was selected for all
case studies presented in this work, as it was the most light-weight architecture displaying minimal
values for the error metrics tracked in Table B.2 and Figure C.3.

Figure B.1. Results of ablation study. (a) NMAE determined through the propagation of 128
posterior samples, conditioned across all available property sets. Propagated posterior means are
evaluated directly against the condioning property set. (b) Normalized 95th percentile of properties,
as determined through the estimated CDF from all propagated posterior samples.
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Table B.2. Model architectures and mean error metrics considered across the property space.
Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6

E1 (GPa)

MAE 0.937±0.969 0.822±0.742 0.850±0.843 0.896±0.939 0.782±0.813 0.724±0.740
NMAE (%) 0.864±0.778 0.768±0.616 0.783±0.654 0.814±0.695 0.723±0.633 0.668±0.564

95th 2.959 2.751 2.749 2.887 2.144 2.150
Norm. 95th 2.738 2.546 2.544 2.672 1.984 1.990

E2 (GPa)

MAE 0.917±0.958 0.810±0.734 0.777±0.832 0.929±0.929 0.809±0.802 0.718±0.731
NMAE (%) 0.846±0.770 0.757±0.609 0.718±0.647 0.846±0.691 0.751±0.627 0.666±0.559

95th 2.860 2.616 2.009 2.754 2.103 2.047
Norm. 95th 2.647 2.422 1.859 2.549 1.946 1.895

G12 (GPa)

MAE 0.345±367 0.273±0.288 0.319±0.330 0.332±0.359 0.279±0.310 0.265±0.285
NMAE (%) 0.826±0.768 0.665±0.621 0.762±0.660 0.792±0.693 0.674±0.632 0.639±0.565

95th 0.963 0.683 0.904 0.970 0.743 0.711
Norm. 95th 2.337 1.658 2.193 2.353 1.803 1.726

k1 (W/mK)

MAE 1.269±1.204 1.036±0.987 1.134±1.114 1.201±1.149 1.007±0.997 0.920±0.908
NMAE (%) 0.404±0.388 0.332±0.329 0.359±0.347 0.380±0.352 0.321±0.324 0.292±0.290

95th 3.122 2.685 3.326 3.514 2.543 2.732
Norm. 95th 0.988 0.850 1.053 1.112 0.905 0.864

k2 (W/mK)

MAE 1.244±1.206 1.106±0.988 1.048±1.108 1.241±1.151 1.042±0.997 0.914±0.907
NMAE (%) 0.396±0.389 0.326±0.329 0.332±0.345 0.393±0.353 0.333±0.324 0.291±0.290

95th 3.121 2.746 2.695 3.558 3.136 2.766
Norm. 95th 0.988 0.869 0.853 1.126 0.992 0.875

C Appendix: Resulting Microstructures
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Figure C.1. Heterogeneous microstructures drawn at random from the available dataset.
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Figure C.2. Heterogeneous microstructures identified through transforming 25 posterior
samples through the phase-field model forward process, p(m|k∗). (a) Al-Si low-contrast ratio
microstructures for the first test case, and (b) the second test case.

Figure C.3. Heterogeneous microstructures identified through transforming 25 posterior samples
through the phase-field model forward process, p(m|k∗). (a) High-contrast ratio microstructures for
the first test case, and (b) the second test case.
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D Appendix: Notation

Table D.1. Definitions of common variables used in this work
Variable Definition
Ω1 Process Space
Ω2 Structure Space
Ω3 Property Space
F Process-Structure forward mapping (tilde denotes surrogate model)
G Structure-Property forward mapping (tilde denotes surrogate model)
H Process-Property forward mapping (tilde denotes surrogate model)
mα

s Discrete microstructure function for state α in voxel s
fαβ
r 2-point spatial correlations between phases α and β with offset r
θ Vector of processing parameters
θ1, θ2 First two processing parameters for spinodal decomposition (mobilities for each phase)
θ3 Third processing parameter for spinodal decomposition (initial relative concentration)
k Vector of material properties
E Young’s Modulus
ν Poisson Ratio
κ Thermal conductivity
pn(θ|k∗) Posterior distribution of process parameters given a vector of target properties k∗
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